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1 Introduction
Lecture 1 - Wednesday, September 03

We enumerate discrete structures that encode different objects (permutations, partitions, trees, net

works, DNA sequences, lattice pathes, etc.).
We use tools in Pure Math/ CS to study concrete objects with applications in CS, physics, chemistry,

bioinformatics, statistics, etc.

Definition 1.1: Combinatorial Class

A combinatorial class is a set C together with a weight function w : C — N such that there are a

finite number of elements of any size, i.e.

Con=wl(n)={0eC:w(o)=n}
is finite for all n € N.
This is the minimal structure needed for enumeration.

Example 1.1

Let C = {£,0,1,00,01,10,11,...} be the set of binary strings, where £ denotes the empty string. If
w(o) = length of o, then (C,w) is a combinatorial class. If w(o) = number of zeros in o, then (C,w) is

not a combinatorial class.

Definition 1.2: Counting Sequence

The counting sequence of a combinatorial class (C,| e |) is the sequence

(cn) = co,c1,C2, ...

where ¢, = |C,| is the number of elements of size n in the class.

Example 1.2

If (C,| e]) is the usual set of binary strings, then ¢, = 2.



1.1 Usual Starting Point

The usual starting point is when we have a description of the class C, and we wish to say something interesting
about it. For instance, we could talk about:

e a closed formula, such as ¢, = 2" in the example above;

o asymptotic behaviour, such as log(n!) ~ nlogn;

e an efficient algorithm to compute fy, the Fibonacci number;
e a recursive formula, for example, f, 11 = frnt1 + fu-

Our general tools are bijections and generating functions. Bijections use old/ simpler objects to
study new/ complicated objects, while generating functions give a data structure to store sequences and help
determine their properties.

1.2 Bijections
Let A and B be two sets.

Definition 1.3: Injective

A function f: A — B is injective if a # o’ implies f(a) # f(a').

Definition 1.4: Surjective

A function f: A — B is surjective if for any b € B, there is a € A with f(a) = b.

Definition 1.5: Bijective

A function f: A — B is bijective if it is both injective and surjective.

Proposition 1.1
f: A — B is a bijection if and only if it has an inverse g : B — A meaning

flg®)=b  and  g(f(a)) =a

for all b € B and a € A. We write f~! for the inverse.

Example 1.3

Show that Z and 27Z are in bijection.

Lecture 2 - Friday, September 05

A bijection of combinatorial classes (A,|e|4) and (B,|e|p) is a bijection f : A — B that “preserves
size” (elements of size n is sent to elements of size n, for all n € N).



Example 1.4

A permutation of size n is a rearrangement of 1,...,n. A permutation matrix of size n is an n x n
matrix with 0 and 1 entries such that every row and colume has exactly one 1’s.
Show that the classes P of permutations and M of permutation matrices are in bijection.

Solution. The value of the i* entry of the permutation is the position where the entry with 1 in the

it" row of the permutation matrix is. This has an inverse. O

Question 1.1. How do we find bijections?

We have some different way to find intuition of finding bijections. We could look at small examples

to find patterns, or we can also relate to objects/ bijections we have already understood.

Bijections allow us to give combinatorial proofs for identites of the form LHS = RHS:
1. Find sets A and B with |A| = LHS and |B| = RHS;
2. Prove that A and B are in bijection;
3. We conclude that LHS = RHS.

|
Recall that (Z) = Ic'(nni—k)' is the number of ways to pick k elements from {1,...,n}.

Example 1.5

Give a combinatorial proof that (Z) = ( " k:) for all n,k € N with 0 < k < n.
n—

Proof. Let A be the set of subsets of {1,...,n} with k& elements and let B be the set of subsets of
{1,...,b} with n — k elements. The bijection is just sending a € A to [n] \ a € B. O

Question 1.2. How do we do combinatorial proofs?

We shall find the right interpretation for both sides.

For instance

Sequence Interpretation
n! permutation
A subsets of {1,...,n}, binary string of length n, integer composition of size n + 1
A" strings on the symbols {0,..., A — 1}
<Z) subsets of {1,...,n} of size k
t—1
" stars and bars
t—1
axb Cartesian product/ pairs of sets with size a and b
a+b disjoint union of sets with size a and b
b
(a + ) lattice paths from (0,0) to (a,b) using steps (0,1) and (1,0)
a



Lecture 3 - Monday, September 08
Yapping about sage math the whole lecture today.
Lecture 4 - Wednesday, September 10

Let C be a combinatorial class with counting sequence
(cn) = co,c1, ...
How can we represent ¢,,7 A “nice” closed form may not exist. We need a data structure for sequence.

Definition 1.6: Generating Function

The generating function of a class C is a series

C(x) = chx” = Zm‘”‘

n>0 =

This is also called the GF of ¢,.

Question 1.3. What kind of series is this?

Example 1.6

If ¢, = 2", then C(z) = Z 2"z™ is a convergent series when || < 3.
n>0

Example 1.7

If ¢, = n!, then C(x) = Z(n')m" is a convergent series when = = 0.
n>0

We don’t want to worry about convergence. Also, we might want series where coefficients are not
just real/ complex numbers (i.e., a series in x where coefficients are polynomials in y).

To get around this, we define formal power series.

Definition 1.7: Ring

A ring if a set R together with two operations + and x (from R X R to R) and two special elemetns
0 and 1 such that

e (a+b)+c=a+ (b+c); o (axb)xc=ax(bxc);
e a+b=>b+a; e IXa=ax1l=a
e a+0=gq « ax(btc)=(axb)+(axc)

e Ya€ R,3(—a) € R,a+ (—a) =0; ¢ (b+c¢)xa=(bxa)+(cxa)



Example 1.8

C™*™ form a ring. (notice that this ring is not commutative).

Example 1.9

C, Q, Z, Z/AZ are all commutative ring.

Comment 1.1

If a x b =0 implies a = 0 = b, then R has no zero divisors.

Definition 1.8: Integral Domain

A commutative ring with no zero divisors is called an integral domain.

Definition 1.9: Field

A field is an integral domain where for any a € R with a # 0, there is some a~! € R with a-a~! = 1.

1.3 Ring of Formal Power Series

Definition 1.10: Ring of Formal Power Series

Let R be an integral domain, the ring of formal power series with coefficients in R is the set R[[z]]

of formal expressions

oo
Z nt™ = co + 1z + cx® + -+ with each ¢ €ER
n=0

We define addition by
Z anx” + Z b = Z(an + bp)a"

n>0 n>0 n>0

and we define multiplication by

Zana:” anx” = Z ( Y akbn_k> "
k=0

n>0 n>0 n>0

Lemma 1.1
R][z]] is an integral domain.

Note 1.1

This is not a field as, for example, x has no inverse.



Lemma 1.2

Let A(z) = Zanx" € R][z]], there exists B(x) € RJ[z]] with A(x)B(z) = 1 if and only if ag is
n>0
invertible in R. Such a B(z) is the multiplicative inverse of A(z) and often written as A(x)~! or ﬁ.

Comment 1.2

We write [2"]A(z) = ay,.

Lecture 5 - Friday, September 12

Example 1.10

Prove that

Z 2"z"™ as formal power series Q[[z]].
n>0

1—2z

Proof. We want to show that 1 — 2z is the multiplicative inverse of ) ., 2"z". by definition,

(1—2x)) 2"a™ =) 2"a" — (2z) Yy _2"a"

n>0 n>0 n>0
=14 2"g" =) 2t =1
n>1 n>0
as desired. 0

1.3.1 Ring of Laurent Series
Definition 1.11: Ring of Laurent Series

If R is an integral domain, then the ring of Laurent series with coefficients in R is the set of formal

expressions

R((x)) = {chx" t¢;j€R Vjand (e Z}
n=~

where Z an:v"—i—z bpx™ = Z (an+by)x™, and Zanxn Z bpx™ | = Z (Tinanbnk> z".
k=t

n=>¢( n>m n>min(f,m) n>4 n>m n>0+m

Comment 1.3
Laurent series only have a finite number of negative expressions.



Example 1.11

We have 7% + 272+ +--- € Q((x)), but 3., 2™ is not.

Lemma 1.3
If R is a field, then R((z)) is a field.

Getting back to our original motivation, we use formal power series as generating functions that

form data structure for sequences. Because GF are algebraic objects, we can specify them with algebraic
equations.

1.3.2 Analytic (Generalized) Binomial Theorem

Theorem 1.1: Analytic Binomial Theorem

Let K be a field contained in C (such as Q). If a« = r/s for 7,8 € Z and s > 0, then the equation

y®* = (1 + 2)" has a solution
zZ) = Zk z
y(2) ;;ZO <k) € K[[7]]

where we extend the definition of binomial coefficients by

(Z) = a(a—l)(a—2]2!~--(oz—k+1) where a € Q,k € N

The equation y* = (14 z)" has at most s distinct solutions, obtained by multiplying y(z) by any of
the numbers in {t € K : t° = 1}.

— Comment 1.4

We also write (1 + 2)® for the series y(z).

— Exercise 1.1

Find the coefficient of 2 in the expansion of (1 + z)~1/2.

Solution. The Analytic Binomial Theorem implies the coefficient of interest is

(—1/2) _ (-1/2)(-1/2=1)---(-1/2—=n+1)

n n!

= (fl)n27n (1)(3)(5) e (2n - 1) ) 2" . nl
n! on . pl
= (_1)n47n27n! — (—1)ram <2n)

nln! n

as desired.

10



Exercise 1.2

Show that (1 — 4az)~ /2 = Z <2n> x”.

n
n>0

Lecture 6 - Monday, September 15

Comment 1.5

The notation [2"]F(z) was invented in Waterloo.

1.3.3 Generating Function Examples

Remember that the generating function for a combinatorial class C is the series

C(x) = Z cpx’ = Zx‘”‘

n>0 oceC
where ¢, is the number of objects of size n. By default, we consider them to be elements of Q[[z]].

Example 1.12

How many ways are there to make change for n cents using 1 cent, 5 cents, 10 cents, and 25 cents

coins?

Solution. Let M to be the combinatorial class with set M = N* with size function |(a,b,c,d)| =
a + 5b + 10c 4+ 25d. The generating function for this class is

M(IE) _ E 1,|(a,b,c,d)| _ E ma+5b+100+25d _ E 7 E be E l,lOc E 1‘25d

(a,b,c,d)EN* a,b,c,d>0 a>0 b>0 c>0 d>0
1 1 1 1
S l—x 1—g25 1—210 122

For instance,
M(x) =1+ +242200 ¢ ...

which means that there are 242 ways to make change for 100 cents. In general, we have the following

methods to find the number [2"]M (z):

1. compute directly [z"|M (z) for any fixed n;
2. get a linear recurrence for m,, = [z"]M (z);
3. get a “closed formula”;
4

. get asymptotics, i.e., m, ~ n?/7500.

11



Example 1.13
The generating function for the number of ways to roll two dice. We have
D ={(a,b) €{0,...,6}*} and |(a,b)|=a+b
We observe that the GF in fact has two different factorizations:
D(z) = (z 4 2% + 23 + 2% 4 2° + 25)?
= (z+22° + 22 + o) (x + 2® + 2* + 2° + 25 + 2®)

The second GF represents the Sicherman dice with faces (1,2,2,3,3,4) and (1,3,4,5,6,8).

Example 1.14

Consider a sequence of formal power series Fy(x), Fi(x), Fo(z),. .., in R[[z]]. We say that the sequence

(Fr(x)), formally converges if for every n € N, there exists L € N and ¢, € R such that
["]Fr(x) = ¢, whenever k > L
i.e., eventually, all coefficients stabalize. When this holds, we write

kli_)ngc Fi(x) = Z cnz” € R[[x]]
n>0

For instance, the sequence (Fy(x) := 2Fz¥); converges to 0, and the sequence (Fy(x) := 1+ z + 22 +

k : n
-+ + ") converges to the series ano x™. Moreover, suppose we have

_ 1
C1-a/k

F()(x) = 17 Fk(x)

then the sequence (FJ(z))s does not converge because, for example, [#!]F}(z) = 1/k which does not
stabalize.

This allows us to talk about the convergence of infinite series of power series. We say that »_, -, Fi(x)

exists as a formal power series if S, = Y <, Fi(z) formally converges, and we write

lim S, = ZFk(x)

n—oo
k>0

Theorem 1.2

Let A, B € R[[z]] be two formal power series. If A(x) is a polynomial, then A(B(z)) always exists. If

A(z) has a infinite number of non-zero coefficients, then A(B(x)) exists if and only if [z°]B(x) = 0.

12



Proof. If A(z) has only a finite number of non-zero coefficients then

AB(2) = Y auB2)"

n>0

is a finite sum of formal series on the right-hand side, which is always formally summable. Suppose now that

A has an infinite number of non-zero coefficients. If B(0) = 0 then
Bz)"=biz+-- )" =0b2"+---

so that [2¢] B(2)¥ = 0 if k > £. In particular,

N ¢
[zé] ZakB(z)k = [zé] ZakB(z)k
k=0 k=0

does not depend on N whenever N > ¢. Thus, the coefficients of the partial sums defining A(B(z)) stabilize
and the composition exists. Conversely, if B(0) = by # 0 then

N
[2°] Z arB(2)* = ag +arbo + - +anb) !
k=0
Because by # 0 and an infinite number of the a; are non-zero, this partial sequence will not stabilize as N
grows, meaning the composition is not defined. O
Lecture 7 - Wednesday, September 17
1.3.4 Formal Derivative, Formal Integral, Formal Exp, Formal Log
Let Fi(z) = )_,5o fa2" be an element of R[[z]].

Definition 1.12: Formal Derivative

The formal derivative of F(x) is

F'(x) = annxnil = Z(n + 1) faprz"”

n>1 n>0

Definition 1.13: Formal Integral

If the positive integers has multiplicative inverse in R, then the formal integral of F' is defined as

/F(:r) = Z nﬁllxwrl
n>0

If the positive integers has multiplicative inverse in R, we define

xn+1

exp(z) =
n>0

n!

13



and the formal logarithm

_ [ N D s
10g(1+z)/1+$; —

We then define (1 + z)® = exp(alog(l + z)). The Generalized Binomial Theorem (see section 1.3.2) further

generalizes to
@
1 « — n
oy =3 (2)e

n>0
1.3.5 Rule for Extracting Coefficients
We have the following rules for extracting coeflicients:
1. Addition: [2"](A(x) + B(x)) = [z"]A(z) + [z"]B(x);

2. Multiplication: [z"](A(z)B(z)) = Y p_o[#"]A(z)[z" *]B(z), this further yields us the following

rule: [z"]c- A(z) = c[z"]A(x) for some constant c;
3. Coefficients scaling: [z"]A(pz) = p"[z"])A(x) for some p a constant;
4. Monomial Multiplication: [z"]aFA(z) = [2" *]A(x);
5. Binomial Theorem;

—t n+t—1
6. Negative Binomial Theorem: if ¢ is a positive integer, then ( ) = (—1)”( :_ 1 );
n _

1.4 Combinatorial Construction

Lecture 8 - Friday, September 19

Recall a combinatorial class (C,w) has a generating function C(z). We want to build a class out of
other classes and relate their generating functions.

Base Case:
e Atomic Class: Z = class with one object of size 1;
e Neutral Class: £ = class with one object of size 0.
Construction:

o Sum: Let (A,w,) and (B,wp) be combinatorial classes, then the sum C' = A + B is the new combi-
natorial class whose set of objects is the disjoint union of the objects in A and the objects in B. The
size of o0 € C' is defined as

|O"A ifoe A

lole = ,
lolp ifoeB

Lemma 1.4

If C = A+ B, then C(z) = A(z) + B(x).

14



Proof. Because the union is disjoint,
Cpn = ap + by, foralln € N

as desired. O

Product: Let (A,w4) and (B,wp) be combinatorial classes, then the product C = A x B is the new

combinatorial class whose elements are all pairs {(a,b) : a € A,b € B} with size defined as

|(a,b)|c = lala + |b]B

Lemma 1.5

If C = A x B, then C(z) = A(z)B(x).

Proof. We have
C(x) = Z glole — Z plalatibls — <Zx|m> (Z xlb3> = A(x)B(x)
ceC acA,beB a€A beB

as desired. 0

Product: For any class (A, w4), we define

AF = AxAx.-.-x A
—_——

k terms

and we define A° = €.
Sequence: If (A,w,) is a combinatorial class with NO objects of size zero, we define the class
SEQA)=E+ A+ A%+ A3 + ...

i.e., SEQ(A) contains all finite length tuples of elements in A. This is a combinatorial class because

A has no object of size zero, so A* has objects of size at least k.

Lemma 1.6: String Lemma

1

If C = SEQ(A) then C(z) = T A

Note 1.2

We know that [2#°]A(x) = the number of objects of size 0 in A, which is zero, so [z°](1 —

A(z)) = 1, which means that the fraction above exists.

15



Proof. As formal power series,

C(x) :1+A($)+A(x)22+...:ZA(l.)k - —

as desired.

1.4.1 Combinatorial Construction Examples
Example 1.15: Binary strings

Let B = class of binary strings where size is defined by the length. A binary string is a finite sequence

of 0’s and 1’s, where each 0 and 1 adds one to the size of a string, so we have
B = SEQ(Zy, Z1)

1
and the generating function is B(z) = T 95 5° there are [x™]B(z) = 2™ binary string of length n.
—2x

Example 1.16: Integer compositions

The class C of integer compositions contains all finite length tuples (ay,...,as) of positive integers
where |(a1,...,a¢)] = a1 + -+ + ag. Let P be the class of positive integers, then C = SEQ(P). We
know that P ={1,2,3,...}, and
Plz)=z+2®+2%+ -
Thus
1 1 T
T 1-P(x) 1-22 1-2z

C(x)

If n > 1, there are [z"]C(x) = 2" — 2"~ compositions of size n and there are [z°]C(x) = 1 composition

of size 0.

You can modify these constructions. For instance, we can define

-~ 1

11— A(w)?
A(x)"*

1= A2

SEQeven(A) =&+ A2 + A* “+ ..

SEQ>k(A) = AF AR opR2 o

16



Lecture 9 - Monday, September 22

Example 1.17: Rooted planar binary tree

A (rooted planar) binary tree is either empty, or single vertex followed by a left binary tree and a right

binary tree (size is the number of edges). Therefore, we know that

B = £ + ZxBxB

empty tree  the rest binary trees

This yields us that
B(z) =1+ xB(z)?

Solving for B(x) we obtain that

B(z) = # or B(z) =

14++/1—4x
2z

However, one of them is combinatorially irrelevant to us, so how can we determine which one of them

is the one we care about? We can simply expand it out and find out that the one on the left is the on

we wanted. So there are [z"]B(z) = %_H(Qg) binary trees of size n.

Example 1.18

Let T be the class of all rooted planar trees such that it is a root vertex followed by a sequence of
rooted planar tree. Hence we have
T=7xSEQ(T)

Hence we have

T =127

so the number of planar trees is [z"]T(z) = %(2”72).

Example 1.19

A Dyck path of size n is a sequence of “up steps” (') and “down steps” (\) that starts at the origin
and ends at some point (2n,0) and never goes below the x-axis.

Note 1.3
The size of a dyck path is = the number of up steps.

By considering the first time we return to the z-axis, we have a unique decomposition
D=E+Z xDE&,xD = D(x)=1+zD(x)*

The reason we have £\ is because only “up steps” contributes to the size of the path.

17



Example 1.20

Find the number of compositions of size n that have exactly k “parts” (i.e., are k-tuples). Let P be

the positive integers, and A is the specified class of compositions, then A = P*:

2k

— pk_
A=P RO

Thus there are [x"]A(z) such compositions. If £ > n, this is 0. Otherwise, there are
ok —k n—1
n — (-1 n—k _
e = () = ()

Example 1.21

How many compositions have an even number of parts? How many have an odd number of parts? Let
FE be the class of compositions with even number of parts, and let P be the class of positive integers.
We have

1 1 1 -2z + 22 z?
B(2) = SEQupen(P)(x) = : = =1
(CL‘) SEQcven( )('75) 1— P(z)? {— (L)Q 1-—2z + 1—-2z
1—x
Hence
1 ifn=0
["]|E(x) =1 0 ifn=1

=2 ifp > 2

From here we can directly conclude that there are 27~ — 272 = 2"~2 compositions of size n > 2 with

an odd number of parts.

Lecture 10 - Wednesday, September 24

We do not always want to solve algebraic equations to get coefficients.
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1.4.2 LIFT

let D be an integral domain contains Q (or, for example, R, C, Q[y]). If G(u) is a formal power series in
D[[u]] such that [u°]G(u) is invertible, then there exists a unique element R € D][2]] with [2°]R(2) =

such that
_R(z)
"~ G(R(2)
[

Furthermore, if F(u) is any formal power series in D[[u]], then

for all n > 1.

Note 1.4
The most important case is when F(u) = u, and we have

="R(2) = ~ [ G )"

n

Example 1.22

Recall that a planar rooted tree is a vertex followed by a sequence of nonempty planar rooted trees. If
T is the class of rooted planar tree, then

T = Z x SEQ(T)

where G(u) = (1 — u)~!. Hence

Example 1.23

Fix a positive integer r. Find the number of rooted planar trees where every vertex has either 0 or

exactly r children. If T is the combinatorial class of such trees, then

T=2Zx(E+T)

T(z) = 20+ T(z)) = 2= o
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where G(u) = 1+ u". Hence

r{n—1
((n—nl)/r) r | n—1

[£"IT(e) = "G = [+ ) =

S
S

Example 1.24

For 5-ary tree, we had
T(x) =1+ 2T (z)°

The problem with this is that there is an object of size 0. To connect this, let S(x) = T(x) — 1, so

S(x)
Sx)=z(S(x)+1)° = r=——
() = 2(5(z) + 1) e
where G(u) = (1 4+ u)®. Hence if n > 1, LIFT implies that
1 1/ 5n
nmT — [pn — —[yn—1 1 5n _ —
17) = 718 = e+ = (7))
Example 1.25
The Lambda W-function W (z) is defined by
W(z)
W(Z)GW(Z) =z — z =
G(W(2))
where G(u) = e™. Hence for n > 1,
n 1 n—11,—nu 1 (7”’)”71
W) = e =

which yields us that

Proof of LIFT, Theorem 1.3. You can prove LIFT using tools in complex analysis (contour integrals, residues,
etc.) The proofs are short and nice, but they only apply in certain circumstances. There are several formal
proofs, and there are also combinatorial proofs.

One formal proof uses formal analogs of the tools from complex analysis. See more at the following

website: https://enumeration.ca/toolbox/lift/. O
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1.5 Exercises

Some exercises can be found on https://enumeration.ca/. Shout out to Stephen Melczer.

1.5.1 Combinatorial Proof Exercises

— Exercise 1.3

Give bijective proofs of the following identity. For all n € N,

i (Z) k =n2"1
k=0

> (1= (1))
=S () - (60

i.e., choosing a group of size k and a leader from the group is the same as choosing the leader first and then

Proof. We observe that LHS =

and RHS =

fill the group with k& — 1 more people. O

— Exercise 1.4

Give a combinatorial proof for the following identity:

(=) (D00 ozken

Proof. The LHS counts the number of ways of choosing two groups of people out of n, denoted as group A

and group B. For the RHS, (n> is the number of ways choosing people in AN B, <Z B Z) is the number of
i —i

—k
ways choosing people in A — B, and <TI:; ) is the number of ways choosing people in B — A. O

— Exercise 1.5

Give a combinatorial proof for the following identity:

(2a+bb+l> :g(a—;—z)(cH—f—i)

Proof. The extra one splits the 2a into two parts of size a, and then we are having b bars trying to partition

them into b + 1 parts. The one is essential because it distinguishes the different ways of partitionining two
subparts as counted on the RHS. O
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Exercise 1.6

Prove that

n—1

m n
E = forall 0 <
m_k(k> (k+1) orall0<k<n

Proof. RHS is simply counting the number of ways of picking k + 1 things to form a subset of [n]. For the
LHS, it describes another way of counting: we can first select the (k + 1)-th largest element. Let’s say this
element is at position m + 1, where m ranges from k (at least k elements before it to form a group of k + 1)
to n — 1 (this is the maximum index it can take while still leaving room to have chosen k elements before

it). Once we fix this (k + 1)-th largest element at position m + 1, we need to choose k elements from the

m
first m elements. This can be done in i ways. O

1.5.2 Combanotorial Construction Exercises

Exercise 1.7

Find the number of binary strings of length n such that every block of Os is followed by an even number
of 1s.

Proof. The regular expression recognizing all such binary strings is given by
17(00" (11) (11)™)*0*
and hence if B is the class of all such binary strings, then
B = SEQ(Z)-SEQ(Zy - SEQ(2Z0) - Z7 - SEQ(Z})) - SEQ(Zo)

as desired. 0

Exercise 1.8
Prove that the generating function B, (z) for the class of binary strings with blocks of size at most r is

1— Zr+1

Br(w) = 1—2z+4 2711

Proof. The regular expression recognizing all such binary strings is given by
(eUlu---ULIMH((OU---UOH)(LU---ULT))*(cUOU---UO")
and hence if B is the class of all such binary strings, then
zr+1 -1 zr+1 — 2
B =
(z) ( z—1 )( z—1 )

as desired. 0
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2 Class with Parameters
Lecture 11 - Friday, September 26

Why did we take formal power series in D[[z]] with D an integral domain? We can make D a ring

of formal power series. For instance,
Q[[=]][ly]] = Dllyll ~ where D = Q[fx]]
where Q[[2]][[y]] = {X_, 50 an(x)y™ : an(x) € Q[[z]]}. Similarly, we have Q[[yl][[z]] = {3250 bn(y)2™ :
bn(y) € Q[[y]]}. We can say Ql[z]][[y]] “is the same” as Q[[y]][[z]]. In fact, its the same as
Q. yl] = Z ai;z'y’
4,§>0

This holds if Q is replaced by any integral domain, thus we can define Q[[z1, . .., z4]] recursively.

— Note 2.1

For Laurent Series, the order of the variables does matter. For instance,

T j— Y - i 1 +19€/y - ; Z <_z> - Z(_l)nyinilxn = Qi)

n>0 n>0

but is not in Q((z))((y)).

= Comment 2.1

Moral: Be very careful with the order of variables for Laurent Series.

Here are some notation conventions in this course:
o We write z = (21,...,24);
o We write 2% = 27" - - - 2/;

Therefore, we can write the following in a more compact form

i iq __ 1
E i1y .oy Qg2 2y = E a;z*

01,000,820 1€Nd

Comment 2.2

An important subring of D((2)) is the ring of Laurent polynomials: Q[z,z7], all Laurent series with
a finite number of non-zero coefficients. The nice thing about it is that the order of the variables does

not matter.
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Definition 2.1: Parameter Function

Let (C,| e |) be a combinatorial class. A parameter function is any function p : C' — Z¢.

Definition 2.2: Multivariate Generating Function
The multivariate generating function of the class with parameters (C,| e |, p) is the formal power series
Clus) = Y 2 = 3 [ 3 st ] 2" € Qi)
oceC n>0 \iezd

where f; , is the number of objects in ¢ € C with p(o) =i and |o| = n.

Example 2.1

If B is the class of binary strings (where |o| = len(0)), and p(o) = # of zeros in o, then

1
2wt =D (4w =y

n>0 n>0

Blu,z)=Y (Y (:)uk =

n>0 \ k>0

which exists only if we view z as the variable instead of u. Because each coefficient of z is a (Laurent)
polynomial in u, we can set u = 1 to get B(1,z) = 1/(1 — 2z), which is the generating function of all

binary strings.
Lecture 12 - Monday, September 29

Example 2.2

Let T be the class of planar binary trees (with size = # of vertices). Let p(z) = # of leaves in the tree,
S0
T(u,z) =14 uzx + (2u)z? + (4u +u?)a> + - -

Note 2.2

Note that C'(1,2) = C(z) is the regular generating function for the class (C,| e |). Also note that if

C(u, ) is a polynomial in u (with no negative powers), then

C(0,z) = generating function for objects with parameter value 0

Note 2.3

If C(u, ) has no negative power of u and C(u, x) is rational, then the generating function C(0, z) where

the parameter values are all 0 is also rational.
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Example 2.3

This serves as an example to the note above. Let D = walks on = (1,1) and \ = (1, —1) that start
at (0,0) with |w| = # of steps in w. Let p(w) = ending height (y-coordinate). One can show that

1

D(u, ) = 1—(u+1/u)z

If R(x) is the generating function for the walks ending with height 0 (end on the z-axis), then

R(x) =) <2:>$" = (1—4n)~1/?

n>0

which is indeed not rational.

2.1 Combanotorial Construction with Parameters

Suppose that we have two combinatorial classes with parameter (A,| e |4,p(A)) and (B,| e |g,p5)-

Definition 2.3: Inherited

We say that a parameter is inherited with respect to a construction if it behaves “nicely” under that

construction.

1. If C = A + B, then p¢ : C — Z% is inherited with respect to sum if

polo) = A7) €2
pp(o) oc€B

2. If C = A x B, then pc : C — Z% is inherited with respect to product if
pc((@,8)) =pa(e) +pp(8)  V(a,B)€C
3. If A has no object of size 0, and C' = SEQ(A), then p¢ is inherited with respect to SEQ if
pe((oa, ..., 00)) = palar) + -+ palar)

We will say that a parameter is inherited if it is inherited with respect to some product (and SEQ).
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Example 2.4: Non-example

Let B be the class of binary trees, let pp(7) = height of 7 (i.e., the maximum length path from the
root to a leaf). We know that
B=¢&+Z x B?

then we have
p(7) = 1+ max{p(n1), p(r2) }

where 7 and 7o are the two subtrees of 7. Notice that this parameter is not inherited.

Lemma 2.1

If pe is inherited and
e C = A+ B, then C(u,z) = A(u, z) + B(u, z);
e C=Ax B, then C(u,z) = A(u, z)B(u, x);

e C=SEQ(A), then C(u,z) =1/(1 — A(u, x)).

To use these constructions, we need some “parameterized base caes”. We introduce the classes p1, ..., tg
where py, has size 0 and p(uz) = (0,...,0,1,0,...,0), where the 1 appears on the k*" spot. These are
marking classes. Similarly, we also have the classes ugl, who has k" parameter value of —1 and

every thing else zero.

Example 2.5

If B is the class of binary strings, and p : B — N? defined as p(c) = (# 0's,# 1’s). Then p is inherited
and we can write
B = SEQ(p1 X Zo+ p2 x Z1)
—_— =
GF uix GF usx

and hence 1

B - -
(u, z) 1— (w1 + ugw)

Comment 2.3

If d =1 (i.e., dimension of parameter is only 1), then we usually just write p.

Lecture 13 - Wednesday, October 01
In class midterm today.

Lecture 14 - Friday, October 03
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Example 2.6

Let B be the class of binary strings and p(c) = number of zeros in o. Then

1

B=SEQZuxp+2) = Bluz)= 1o

Example 2.7

Let W be the class of paths starting at (0,0) and have steps = (1,1) and \= (1,—1). Let p(w) =
ending height of w. Then

1
W =SEQ(Z Z -1 1% -
SEQUZ xp+ 2, xp ) = Wy, 1= (uz + 2/0)
Example 2.8

Let T be the class of (rooted planar) binary trees, so
T=E+ZxT?

We want p(t) = number of leaves in T. However, in the above specification of these trees, it is hard to
tell whether we are looking ar a leaf or not. Hence we want something different that are easier to deal

with, so we do the following: Let N be the class of binary trees that are non-empty, so we have
N=ZXu+ZxXxNxE+ZXEXN+ZXxNXN

This yields us
N(u,z) = uzx + 22N (u, z) + 2N (u, z)?

which is sovled to be

C1-2z— /1 —dz+ (1 —u)da?
- 2x

N(u,x)

2.1.1 Formal Partial Derivative and Expected Value (when d =1)

Definition 2.4: Formal Partial Derivative

The formal partial derivative of F(u,x) = Z (Z fk,nuk> x" is
n>0 \k€Z

F,(u,z) = Z (Zk . fkmuk_l) "

n>0 \k€Z
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Definition 2.5: Expected Value

The expected value of p : C' — Z on the object of size n is

E.(p) = Z (k [Probability that p(o) =k when |o| = n])

keZ
Note 2.4
We have L.
cUkn
Ea(p) = Y7 (1)
kEZ "
Proposition 2.1
For any n € N, we have
! [z"]C(1, )

Proof. Definition check.

Comment 2.4

Because our definition of formal partial derivative matches the usual derivative for functions from
Calculus, the derivatives behave like they would in Calculus.

Example 2.9

Let B be the class of binary strings and p(c) = number of zeros in o. We just saw that

1

Ble.o) = i ue

Now we have
T T

i-arom — B2 =G5

The Negative Binomial Theorem implies that if n > 1,

and so for n > 1, E,[p] = n2""1/2" = n/2z.

By(u,z) =

28



Example 2.10
Let C be the class of integer composition and p(o) = the number of ones in o. Hence
C=SEQ(Z+ Z*x SEQ(Z))

and 1 11—z
Cu,z) = =
1—(um+%) (I-2)(1 - uz) — 22

Recall that we have already seen that if n > 1, then [2"]C(1,x) = 2"~!. For the numerator to compute

the expected value, we have

(1—2x)%x
(1-22)2

Culla) = { 1-2)% ]

[(1—2)(1—ux)—a?)?

u=1

and for n > 3, we have

[2"]Cu(1,2) = [z"1)(1 — 22) 72 — 2[z"2)(1 — 22) 2 + [2" %] (1 — 22) 2
=pn-2"tponlo(n 1) 4273 (n—2)
— 2n72 4 2n73 .n

Now, we can compute that

224 v 240 (N n)

When n =1 or n = 2, the expected values are both 1.

Lecture 15 - Monday, October 06

Proposition 2.2

Here are some nice facts:

)L 2) = <L), )

[2"] (A(w, 2)],_,) = ([2"]Au, 2)) |,

Exercise 2.1
Find the average value of leaves among the binary tres of size n.
Solution. Let N be the class of non-empty binary trees. Recall that we have

N(u,z) = uzx + 22N (u, z) + 2N (u,z)?

N(u,z)

— T GN(wa)

where G(t) = u + 2t + 2.
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Comment 2.5
|_Thinking of N(u,z) in Q[u][[z]] and G(t) in Qu][t].
LIFT 1.3 implies that

([z"]N (u, 2)) |

[t (w2t +82)"
=[t" A+ 2t + 2"t

_ [tn—l](l + t)Qn—Q _ <2TL —12> in 2 1

n —

1
n+1

2n
We have seem that there are [2"|N(1,z) = ( > binary trees on n vertices, so if n > 1,
n

o) an+1)
E.[p] = 1@g:m%—nwi

n+l\n

by proposition 2.1, as desired.
2.1.2 Variance
Definition 2.6: Variance
We define variance to be

Var,[p] = E, [pQ] - E, [p}Q

Proposition 2.3

We have
ar _ [2"] (Cuu(1,7) +
Varn[p] (0 z

Q

g .|

~

Proposition 2.4
If E, [p] # O for all n sufficiently large, and

Var, [p]

E,[p]?

Then for any fixed € > 0, the probability that a random object ¢ € C of size n satisfies

(1 - 5)]En[p] < p(O’) < (1 + 5)En [p]

goes to 1 as n — oo.
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2.2 ¢-Analogues

Idea: take an identity that we have a combinatorial proof for, track a parameter, and get an

identity involving polynomials.

Question 2.1.

What things have appeared in our combinatorial proofs?

Answer. We have seen powers (2"), binomial coefficients (involving factorials), and sums, etc. O

Comment 2.6

We wish to generalize these to polynomials tracking parameters.

2.2.1 g¢-Factorials
n! counts the number of permutations. We will make a g-analogue involving permutations and a statistic.
Definition 2.7: Inversion

Let m = myme -+ -7, be a permutation of [n] = {1,...,n}. An inversion in 7 is a pair (¢,j) with
1 <i < j <nsuch that m; > 7;. We let inv(7) be the number of inversions of =.

Example 2.11

Consider 13846725, it has the inversion number of value 11.

Definition 2.8: [k],

For k € N, we define 9 k—1
klg=1+q+q¢ + - +q"

and [0], = 1.

Definition 2.9: g-factorial

The ¢-factorial of n € N is

— Note 2.5

‘We note that
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2.2.2 g¢-Factorial Theorem
Theorem 2.1: g-Factorial Theorem

If S,, = set of permutations of size n, then

Z qinv(ﬂ) — [n]'q

TES,

Proof. We build w € S, from u € S,_1 by adding n into the 1-line notation for w in any of the n spots.

We claim that the number of possible inv’s for the new permutation are inv(u),...,inv(u) +n — 1. This is
indeed true because the number of extra inversions is just the number of values to the right of n. Therefore,
we have

ST =), 3 g = [l

weSy UES, 1
as desired. 0

Lecture 16 - Wednesday, October 08

— Comment 2.7

If f: A— B is a bijection between finite sets A and B, and p is a function on A, then

a€cA peB

where ¢(3) denotes p(a) for the unique « € A with f(a) = .

— Exercise 2.2

Show that |S,| = nl.

Proof. Here we give a bijective proof. This holds when n = 0 so we assume n > 0. Define
P,=[n]x[n—-1]---[1]

so |P,| =n!l. Let I: S, — P, be the map that takes a permutation © = 773 ... 7, and returns the tuple
(I+7,...,14+r,) where r; = the number of inversions starting at position i. This is clearly well-defined
because at any position k, the number of inversions starting at k£ can be at most n — k. Let J : P, — S,
be the map takes (si,...,8,) € P, and returns 7 = 7, ... 7, built inductively by setting 7; to be the i‘"
smallest number in the remaining [n] (remaining in the sense that there is no repetition in a permutation).

The part that shows I and J are inverses is left as an exercise. O

2.2.3 ¢-Binomials

Fix n,k € N with 0 < k < n, we define



Example 2.12

As an example, we have

o = = =" +¢ +2¢" +q+1

4 [4]Y A+g+?+)A+q+¢*(1+4q)
. 1Al (1+q)(1+9)

We will sometimes show how we can get the result quickly in sage.

If {s1,...,8:} C [n], we define

sum({s1,...,Sk}) = Z S

Theorem 2.2: ¢-Binomial Theorem
For n € N, we have

n n n
14+ qkz _ qsum(S)Z\S\ _ qk(k+1)/2 Zk
ICRRED S [

k=1 SCln]

Proof. We first prove the first equality. Fix n, let B,, be the class of subsets of [n] counted by size and sum.
Then
By=(E+p-z1)x (E+p 2)-- (E4p" - 20)

— 3 O = By (u2) = (14 uz)(1+ w?) - (1+ )
SC[n]

Now we prove the second equality, which needs a bit more effort. For 0 < k < n, let B,,(k) be the subsets
of n with k elements. so |B, (k)| = (Z) Observe that

[n]lq = [K]lq[n — K]

Define @y, 1, : S, — By (k) X Sk X Sp—i in the following way: Given as, ..., a,, distinct positive integers, let

P(ay,...,an) be the permutation obtained by replacing each a; with its relative order.

Lecture 17 - Friday, October 10

For instance, P(3,19,5,10,20) = 14235.

We define
On k(0109 .. 0p) = ({01, coyokt, Ploy, ..oy 0k), P(0kt1y - - - an)>
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— Exercise 2.3

Prove that this is a bijection.

— Exercise 2.4

If Pn,k = (O[, Ba 7)) then

inv(o) = (sum(a)k(kg_l)> + inv(f) + inv(y)

Here is the idea:

Let

Ey = inversions (i,j) where i < j < k
E5 = inversions (i,j) where k +1<i<j

E5 = inversions (4,7) where i < k < j
and thus |E1| = inv(B), | E2| = inv(y), so it suffices to show that |E3| = sum(«) — k(k +1)/2. We know

that an inversion in E3 corresponds to numbers (a, z) € [n] where a € {01,...,01,} =a and z € [n] \
and a > z. Let S; be the i*" smallest element of «, then

e S; is the number of elements in [n] that are < .S;;

e i is the number of elements in « that are < S;.

and hence S; — ¢ is the number of elements in [n] — a that are < S;. Now, |Es| = (S1 — 1)+ (S2 —2) +
<o+ (Sk — k) = sum(a) — k(k +1)/2, as desired.

Now we can finish our proof. We now have

[an — Z qinv(o)

o€ESy
_ Z qsum(a)—k(k+1)/2+inv(ﬁ)+inv(’y)

(a,8,7)EBn (k)X Sk X Sp_k

— q—k(k+1)/2 Z qsum(a) Z qinv(ﬁ) Z qinv('y)

o€ By, (k) BESk YESn—k

=g RO N @) ) (R [n — ]
a€B,, (k)

" n
— Z qsum(a) — qu(kJrl)/Q |];| Zk
k=0

a€B,, (k) q
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2.2.4 g¢-Lattice Paths

Let L(a,b) for a,b € N be lattice paths from (0,0) to (a,bd) counsisting of F = (1,0) and N = (0,1) steps.

Here are some examples

NEE ENE EEN

It is easy to observe that |L(a,b)| = (a + b). We define
a

area(P) = number of boxes under P and above the z-axis

Example 2.13

In the above three graphs, they have are of 2, 1, and zero respectively.

Theorem 2.3: ¢g-Lattice Path Theorem

For any a,b € N,
a+b
a

Z qarea(P) _

PeL(a,b)

Proof. Let f : L(a,b) — Bgts(a) be the function that maps a path P to the indices of its East steps. Suppose

f(P)={s1,...,84} where the s; are in increasing order. Here is an example

~

P = NEENEEEN

Notice that the number of boxes of P in the column whose top is the si" step equals the number of North
steps before the column. Observe that there are i East steps before s;, and there are s; total steps up to s;,

S0 8; — 1 is the number of North steps up to s;. Thus

a

area(P) = sum(f(P)) — Zz = sum(f(P))

i=1

ala+1)
-
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As a result,

area sum —ala a + b ala —ala
Z grea®) = Z Fum(f(8)—alat1)/2 Cgelat)/2 g—alat1)/2
PeL(a,b) S€Bayv(a) a q
_|la+b
| oa
q
as desired. O]
2.2.5 Use them as our tools
Example 2.14
Prove that 9 n 2
n k2 [n
l ] :Zq [] for any n € N
"lq k=0 K q
Proof. Setting ¢ = 1 yields us
()-%0)
n = k
2
We can prove this combinatorially using lattice paths: |L(n,n)| = n) Decomposing an element P of
n

L(n,n) as a walk P ... P, defined by its first n steps followed by P41 ... P, gives a bijection

f:L(n,n) — CJ L(n —k,k) x L(k,n — k)
k=0

and so

n

(%) = Il = Y 120~ ko120 - D)
k=0
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Now we are done, because

[2n‘| — Z qarca(P) _ z”: Z qarea(Q)—Q—arca(Q')—l-k2
q

n PEL(nn) k=0 QeL(n—k,k),Q'€L(kn—k)

" 2
Z 2 N
k=0 q

as desired.

Lecture 18 - Monday, October 20

Yapping about Sage again ...

2.3 Integer Partitions
Definition 2.10: Integer Partition

An integer partition of size n is a tuple of positive integers (p1, pa,...,p,) with

prtpe+-tp=n and @G 2¢@>- 24

Example 2.15

As an example, 3=24+1=1+1+1.

If we have a partition A = (A1,...,\,), then we write

A =n(0) = A Aa oA,
kA =r
Let Y be the class of (integer) partition.
Note 2.6
There is no nice formula for P,, = |Y,,| = # of partitions of size n, but we can still do a lot of interesting
stuffs.
2.3.1 Tool 1, Generating Function
Theorem 2.4

The generating function for partitions is

o) =3 o = [T (=)

Y E>1
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Proof. Think of a partition as a sequence of 1s, followed by a sequence of 2s, and so on. Then

Pr)=QA+z+2*+- )1+ +a '+ )1+a° +2"+---) -

()

as desired.

Theorem 2.5

The bivariate generating function enumerating partitions by size and number of parts is

1
Bua) = 30w = [T (=r )
— uxr

€Y k>0

Proof. The idea is that
(u,z) = (1 +uz +v?z® + )1 +uz? + v + - )1+ ua® + v+ ) -
yeah.

2.3.2 Partition Generating Function Theorem

Lecture 19 - Wednesday, October 22

Theorem 2.6

For each k > 1, let M}, be a subset of N. The bivariate generating function ®(u,x), tracking size and
number of parts, for the subclass of partitions where the number of parts equal to k lies in M}, for all
k is

O(u,z) = H Z (uz®)’

k>1 \jeMy

Example 2.16

As an example, let M} = N for all &k, then

D(u,x) = H Z(umk)j = H ﬁ

k>1 \j>0 k>1

Note 2.7

Note that if we take u = 1, then we get the generating function just tracking size.
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Example 2.17

The univariate generating function for partitions where every part is even is derived by tracking

N k is even

M, =
{0} kisodd
so that
) 1
_ 2k _
(I)(U,IIJ) - H Z(.’E )J - H 1 _ ux2k
k>1 \j>0 k>1

Proof for Theorem 2.6. Let

Yu = { class of partitions }

Sar = { sequence r = (r1,r2,...) whith only a finite number of non-zero terms where r; € M; for all j }

Define f : Yy — Sy by f(A) = r where r; = number of times j appears in A\. Our claim is that f is a

bijection. Thus,

®(u, ) = Z w N n(N) = Z yritrat Lt 2t

AEY M reSy
(2w ) (5 wr) -
r1€M; r2 € M2
-I0{ > Gty
k>1 \jEMy
ermmmim. O
Example 2.18
Show that for n > 0, the number of partitions of n with odd parts equals the number of partitions of
n with distinct parts.
Proof. The Partition GF Theorem 2.6 implies that the generating function for partitions with distinct
parts is
1— k
[0+ = [+ (1 9”k>
E>1 E>1 -7
s (1 +2%)
[Tis: (1 +2%)
1
- 1 _ p2k—1
E>1
WWWWW. O

39



2.3.3 Partition Diagrams
It can be useful to reperesent a partition graphically.
Definition 2.11: Ferrer’s Diagram

If A\ = (\i,..., ), its Ferrer’s diagram consists of » rows with the i*" row having ); dots.

Definition 2.12: Young Diagram

If A\ = (\i,..., ), its Ferrer’s diagram consists of r rows with the i** row having ); boxes.

We notice that there is a correspondance:

Partition Diagram
size number of dots
number of parts number of rows
largest part number of columns

Definition 2.13: Conjugate Partition

If A= (Aq,...,\r) is a partition of n with largest part A\; = ¢, then its conjugate partition is the
partition A" = (A},...,A}) of n with A} = number of indices 7 € {1,..., ¢} such that \; > j.

Note 2.8

It is just view the Ferrer’s diagram flipped over y = —x (swapping rows and columns). Why is this?

Note 2.9

The map A — ) is a bijection and is its own inverse.

Definition 2.14: Self-conjugate

A partition is called self-conjugate if A = ).

Lemma 2.2

For any n > 0, and positive integer k, the number of partitions of size n with k parts equals the number

of partitions of size n with maximum part k.

Proof. Easy just by looking at the diagram.
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Durfee Square

Definition 2.15: Durfee Length

If X is a partition, then its Durfee length d()) is the number of indices ¢ such that \; > i.

Definition 2.16: Durfee Square

Durfee square is the largest square makde up of dots in the Ferrer’s diagram.

Comment 2.8
I_Observe that the Durfee length is the side length of the Durfee square.

Proposition 2.5

Let S be the class of self-conjugate partitions (i.e., A € S satisfies A = \’), then

Zud(A)xn()\) _ H (1 Jruzzkfl)

AeS k>1

Lecture 20 - Friday, October 24

Proof sketch. Let O be the class of partitions with odd distinct parts. It is sufficient to find a bijection
f S — O that preserves size and sends Durfee length to the number of parts. The idea is: A row with an

odd number of does in O can be “folded”:

Formally, given A € S, let R; be the points in A to the right of (j,j), and D, be the points in A below
(4,7). Because A is self-conjugate, we have |R;| = |Dj|. Define f : S — O by f(\) = (p1,. .., pacx)) where
i = |R;| + D] + 1. O

Exercise 2.5
I_Show that f defined above is a bijection.

41



2.3.4 Euler’s Identity
Theorem 2.7: Euler’s Identity

We have

1 l’dzyd
H 1 —yad - Z

d - -
i>1 o 1limi (1 —ya') (1 —a?)

Proof sketch. LHS is the generating function for partitions enumerated by size and number of parts (u = y).

,,,,,, Dy . P
o ° o L e L
| L |
| |
'@ ° ° o e :
l T
| |
) ° ) o,
| |
l l
) ° ) o,
‘e e
1 ax
) |
We can decompose a partition A into:
D) = Durfee square
ay = dots under D) <— partition
B\ = dots to the right of D) <— partition

a is a partition with parts of size < d()), and S, is a partition with < d()\) parts. Number of parts in X is
d()\) = # parts in «j.

This decomposition implies a bijection from

Y +— disjoint union U {d} x Az x By
d>0

where Ay denotes < d parts and B, denotes parts of size < d. O
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2.4 Exercises

2.4.1 Parameters and Multivariate GFs

— Exercise 2.6

Find the average number of summands among all compositions of size n.

— Exercise 2.7

Find the bivariate generating function for binary strings with no consecutive zeroes enumerated by size

and number of zeroes.
Proof. We have the following regular expression:

(01 — 1)*(0 — )

2.4.2 ¢g-Analogue

= Exercise 2.8
Give a combinatorial proof involving lattice paths that, for all a,b,n € N with 0 < a < b,

IR )

=0

Proof. Identifying a lattice path from (0,0) to (b+ 1,n) by its edge from z =a to © = a + 1.

Exercise 2.9

Prove a g-analogue of the identity in the above exercise (i.e., an identity where the binomial coefficients

are replaced by ¢-binomial coefficients, potentially after multiplying by an extra power of ¢).

Proof. 1 think we can show that

P

j=0

— Exercise 2.10

Prove that

I i

for all n,k € N with £ < n.
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Proof. Split the lattice paths to two cases depend on the first step. On the RHS, the first expression

correspond to the case of up step, while the second correspond to the case of right step. O

2.4.3 Integer Partitions

— Exercise 2.11

Write down an expression for the bivariate generating function enumerating the following classes of

partitions with respect to size and number of parts.
(a) Partitions in which even parts occur at most twice.
(b) Partitions in which the parts of size at most 20 must be distinct.
(c¢) Partitions in which the multiplicity of a part j is either 0 or has the same parity as j.

(d) Partitions in which every part is either divisible by 3 or even.

Proof. We have

(a) H . H (14 uz? +u?2%)

1 —uzk
k>1 odd k>2 even
20 1

1 ky. P
k=1 E>21
uxk 1
14— -
@ 1L (14 =) pg (=)

1 1
sz1 1—uz2F 'Hk21 1—uz3F

1
Hk21 1—uxbk

— Exercise 2.12

Let A be the class of partitions in which each part may occur 0, 1,4, or 5 times, and let B be the class of
partitions which have no parts congruent to 2 (mod 4) and in which parts divisible by 4 occur at most
once each. Prove that for all n the number of partitions in A of size n equals the number of partitions

in B of size n by showing that their generating functions are equal.

Proof. We have

A(z) = H(l + 24 2% 4 )
k>1

= +2)01+2*%)

k>1

We can show that B(z) is the same thing. O
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3 Labelled Enumeration

In many contexts, it is natural to label atoms. A combinatorial object of size n is labelled by giving
each atom a distinct number from [n].

Example 3.1: s

Let G = {graph}. Consider the graph

.

If we were to label all the nodes using elements in [4], we really only have 4 differnet labellings for the
above graph, shown below:

A combinatorial class is labelled by labelling each of its objects, where each object is repeated with each
non-equivalent labelling.

Example 3.2

We have SEQ(Z) = {c,e,00, 000 ...} so the labelled version is
{e,1,12,21,123,132, 213,231,312, 321,...}

which is the class of permutations.

Definition 3.1: Exponential Generating Function

The exponential generating function of a sequence (¢,) is the formal power series

C(z) = Z %:r"

n>0

Definition 3.2: Ordinary Generating Function

The ordinary generating function is Z ™.
n>0

Lecture 21 - Monday, October 27
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3.1 Labelled Construction

As for unlabelled objects, we can build labelled classes recursively. One major takeaway from this
section is that the exponential generating functions of labelled classes behave the same as the ordinary

generating functions of unlabelled classes under our basic constructions.

We have the following base cases:
o Labelled Atomic Class Z = {},

o Labelled Neutral Class £ = {1 object of size 0};

Construction:

o Laballed Sum: If A and B are laballed classes, then their sum C = A 4+ B is the class formed by

their disjoint union.

Lemma 3.1

We have C(x) = A(x) + B(x).

Proof. Disjoint union implies that

Cn (an + bp)
C(z) = ﬁx" = Z — z"
n>0 n>0
Gn bn
=2 IR ) e
n>0 n>0
= A(z) + B(z)
O
o Labelled Product: We want A x B to consist of elements («, ) with o € A and 8 € B.
Note 3.1
The problem is that we will get duplicate labels. We see below how we resolve the problem.
Definition 3.3: Consistant Relabelling
A consistant relabelling of a labelled pair («, 8) of size || 4 |8] is an assignment of
{1,2,...,|a| + |B|} to be the atoms in a and S such that each number is used exactly once, and

— the new labels on atoms in « are in the same relative order as the original labels on the

atoms in «;
— the same for atoms in .

We let « * 8 be the set of all consistant labellings of («, 5).
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Example 3.3

‘We have

(1)« (1123 - { (T} [T2T3). (2 A1), T2, (3 ]203) |

The labelled product C = A x B of labelled classes A and B is the class whose objects form the union
U (a % B), with size |(«, 8)| = |a]a + |8]B-

acA
BeB

Lemma 3.2

If C = A x B, then C(x) = A(z)B(x).

Proof. Fix n. For any 0 < k < n, there are a; objects in A of size k and b,,_, objects in B of size n — k.

Observe that a consistant relabelling of («, 8) with size n is uniquely defined by picking k& numbers in

{1,...,n} to assign to the atoms in «, so there are consistant relabellings. Because we consistant

n
k
relabellings in our construction for C', so

Cla) = am =" [i: (Z) akbn_kl %T

n>0 n>0 Lk=0

= l e (STL_Z)!] 7" = A@)B(a)

n>0 Lk=0

Labelled Power and Sequence:

— Let A* = A x -~ x A, then AF(2) = A(x)";
k ti

— Let SEQ(A) = £+ A+ A%+ - and suppose A has no object of size 0, then C' = SEQ(A) implies
C(z) = T=AG)

Labelled Set: Let A be a labelled combanitorial class. For any positive integer k, the class SET)(A)
consists of the objects in A¥ where two tuples are considered the same if they are equal up to a
permutation.

Example 3.4

In SET3(A), the following objects are equivalenet:

((117(127@3) = (alaa3aa2) = (02,01,03) = (a2,a3,a1) = (a37a17a2) = (113,112,111)
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If C = SET}(A), then, since there are k! permutations for a k-tuple, and no a; and a; with i # j can

be equal because of their labels, we have

when A has no objects of size 0, then we define
SET(A) =&+ SET1(A) + SET>(A) + - --

and we have the following result:

Lemma 3.3

If A has no object of size 0 and C' = SET(A), then

= Comment 3.1

We can have SET in the unlabelled case as well, but in that scenario, if C = SET(A), then

_1yk—1
C(z) = exp Z %A(xk)

k>1

e Labelled Cycle: Let A be a labelled combanitorial class. For any positive integer k, the class
CY Cr(A) consists of the objects in A* where two tuples are considered equal if they are equal up to
a cyclic shift. We define
CYC(A)=CYC1(A)+CYC(A) +---

Lemma 3.4

If A has no object of size 0 and C = CYC(A), then

3.1.1 Labelled Construction Examples

Question 3.1.

Why is exp (log (ﬁ)) = ﬁ?

Answer. As labelled classes, these are the generating functions for

SET(CYC(Z)) and  SEQ(Z)
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respectively. A permutation can be viewed as a set of disjoint cycles (for instance, (12)(3)), this is known as

the cycle decomposition theorem from Pmath347. O

Lecture 22 - Wednesday, October 29

Example 3.5

In a planar rooted tree, the order of the children matter. A non-planar rooted labelled tree of size n
is a rooted tree on n vertices whose vertices are labelled with {1,...,n} where the order of a vertex’s

children does not matter. If T is the labelled class of such trees, then
T=7xSET(T)

where Z represents the root, and SET(T) represents the unordered set of trees. Therefore,

T(x) =aze"™ — = @) withG(t) = et

G(T(x))
By LIFT 1.3, the number of such trees is

n! - [z"T(z) = %![tnfl]G(t)" = (n— D" et = npt

To get unrooted trees, we note that there are n ways to root an unrooted tree, so there are n™ 2

unrooted non-planar labelled trees of size n.

3.1.2 Restricted Construction

Just like in the unlabelled case, we write
SEQ SET, CcYC
for restricted classes.
Example 3.6
We may write SET<,(A) to be the sets with at most r objects, so the generating function would be

. A
27

k=0

Similarly, SET>,(A) has the generating function

T A k
eA@) _ (z)




— Exercise 3.1

Show taht if C' = SET,pen(A), then
C(z) = cosh(A(x))

recall that cosh(z) = (e +e77)/2.

— Exercise 3.2

Show taht if C' = CY Cepen(A), then

— Exercise 3.3
Show taht if C' = CY C,qq(A), then

1+ Az)

C(z) = log T—A()

3.1.3 Restricted Permutations

Definition 3.4: Fixed Point

A fixed point of a permutation is a cycle of length 1.

Definition 3.5: Derangement

A derangement is a permutation with no fixed point.

Question 3.2.

What is the EGF for the class of derangements?

Answer. If D is this class, then

D =SET(CYCsy(Z)) = D(x)=exp {log (1 i x) -

—e 7. elog(ﬁ)

as desired.
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= Comment 3.2

From now on, unless specified, we will use the usual rules of the exponential and logarithm, i.e., we

have the following properties:
1. 6A-B’ — 6A . eB.
2. log(AB) = log(A) + log(B);
3. clog(A) = log(A°) for some constant c;

4. log and exp are inverses of each other.

~— Note 3.2
Note that the probability that a permutation is a derangement is

# of derangements of size n

# of permutations of size n

Also note that in exp, there is already a n! at the bottom of the corresponding coefficient, so the

probability that a permutation of size n is a derangement is

—x

" D(z) = [a"]

1—2z

—1)*
3G

0 !

n

As n — oo, this probability approaches e~!.

Question 3.3.

What if our permutations of cycles of length > r?

Answer. Our class A would be
A=SET(CYCs,.(Z))

Since CY Cs.,(Z) = log (ﬁ) — >t %’: Hence

We are able to show that as n — oo, the probability that you have all cycls of size at least r + 1 approaches
—1-1/2—--=1/r O
e .

Question 3.4.

What if there are no cycles of length 7?7

o1



Answer. We simply have A = SET(CY C4,(Z)), and have

A(z) = exp [108 (1:76) a;:]

as desired.
3.1.4 Set Partitions
Definition 3.6: Set Partition

A set partition of size n is a decomposition of {1,...,n} into disjoint union of non-empty sets called
blocks.

Question 3.5.

What is the EGF for the class of set partitions?

Answer. Let C be this class, so

C =SET(SET>1(Z)) = C(z)=e" !
blocks

Lecture 23 - Friday, October 31

Exercise 3.4
Fix a positive integer r, how many set partitions of size n are there with r blocks.

Answer. If S() is the class of set partitions with r blocks, then

(e —1)"

g — SET_,(SET>1(2)) = S(T')(gc) = '
> 7!

If {n} is the number of set partitions with r blocks of size n, then
r

(e

which is known as the Stirling numbers of the second kind.
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3.2 Functional Graphs

A mapping of size n is a function f : {1,...,n} — {1,...,n}. There are n™ mappings of size n. We can

interpret mappings with restriction using labelled enumeartion.

Comment 3.3

The key idea is to view a mapping as a directed graph on vertex set [n] with an edge z — y if f(z) = y.

The class of functional graphs constructed by this process can be expressed in class of rooted trees.
Theorem 3.1: Map Enumeration Theorem

Let M be the class of mappings, let K be the class of connected functional graphs and T is the class
of rooted labelled trees. Then

M=SET(K) and K =CYC(T)

Thus, we have

where T'(x) satisfies T'(z) = x exp(T'(x)).

Proof. The fact that M = SET(K) follows from the definition of K and the fact that a general graph is a
set of connected components.

Because a mapping has a unique output for every input, every node in a functional graph has
outdegree 1. Thus, every connected functional graph has exactly one cycle.

Coming into the cycle at any vertex is a (possibly empty) connected cycle-free graph, which is a
tree. Thus, K = CYC(T). The labelled trees are rooted as the vertices on the cycle are special, so they

become the roots. See below for an example. O

Example 3.7

Suppose we have f : [6] — [6] defined as:

which as a functional graph depicted below:
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which is the same as:

{(0-0.0.¢].|0-0]}

Example 3.8

An idempotent mapping f is a map such that f(f(z)) = f(z) for all z. Find the EGF for the class
I of idempotent mappings.

Answer. The class of functional graphs corresponding to idempotent mappings consist of connected compo-
nents that are stars: a (potentially empty) set of single vertices pointed at a loop. If X is the class of star
graphs, then X = Z x SET(Z), and I = SET(X). Hence I(x) = exp(xze®). O

Proposition 3.1

We have )
n—
In~k =
Z (k B 1) k!'n 1
k>0
. n—1 —k : . . T(.’L‘)
Proof. We will prove that there are m,, = n")_,-, (kq)k!n mappings of size n. Since xz = m
< T
where G(u) = €%, by setting F'(u) = u* in LIFT (1.3), we have
k
[zn}T(Jf)k — E[unfk]eun
k nn—k
T n (n—k)
Thus, we have
my, =nl-[2"]M(z) =n!- [x”];
1-T(x)
=n!-[z"] X:T(a:)’c
k>0
ko nnk n —k n—1
=nl-> o n—k)! " PILa (k—1>
k>0 k>0
as desired. O

Lecture 24 - Monday, November 03
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3.3 Labelled Parameters

The (labelled) bivariate generating function of a labelled class C' with respect to a parameter p: C' — Z is

o] n
C(u,z) = Z up(")Ta—“ = Z (Z Ck,nuk> %

ceC n>0 \k€Z

where ¢, is the number of objects in C' with size n and parameter value k.

Note 3.3

Some sources call this a semi-exponent generating function.

Again, we can often derive labelled EGSs using a parameterized neutral class/ marking class p (size

of 0 and parameter value of 1). We introduce p into labelled specifications to mark changes in parameter.

Example 3.9

The labelled specification
P=SET(CYC(Z))

encodes the class of permutations as a set of disjoint cycles. Thus, the marked specification
P=SET(uxCYC(Z))
keeps track of the number of cycles in the permutation. Hence, we have
Pu,z) = e“log(l%m) =(1-2x)™"

Similar to the unlabelled case, we have

d k : Caz,n n
2O w)|u=1 = Cu(1,0) = > e
n>0
keZ
Furthermore,
k'ck n
n 1 5
[xn]cu( ,I) _ ZkEZ n! :Zk Ck?ﬂ’b :En[p]
[z7]C(1,x) Cp/n! = Cp

Comment 3.4

From now on, we assume the usual calculus rules for derivatives of exp/ log.
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Example 3.10
Find the average number of cycles among the permutations of size n.

Answer. We saw that P(u,z) = (1 —xz) " =¢e" log(ﬁ)7 o

Pulur) = i) hog (1) = At = s (1)

1- Cl-u 1—2
Since i
1 ¥ 1 1 1
€1 2 Zk [x]l—x0g<1—x> — 4
k>1 i=1
and [2"]C(1,2) = [2"]{2= = 1. We can now conclude that the average length of a cycle among the
permutations of size n is
~ 1
Z = H, |~ logn
k=1
as desired. 0

Example 3.11

Let T be the class of non-planar rooted labelled trees, so
T=7xSET(T)
The Z in this specification corresponds to the root of the tree, so

R=ZxSET(uxT)

uT (z)

encodes the clabelled class R where size and root degree are tracked. Thus, R(u,z) = xe where

T(z) = xeT(®). Therefore,

d

%R(u,x) = 2T (z)e"T® = 2T (z)eT® = T(z)?
The general form of LIFT implies

2" Ru(1, 2) = [2")T (2)?

nn—Q

(n —2)!

2 2
_ 7[tn—2]ent — .
n n

nn—l

Since there are [z"|R(1,z) = [z"]T(1,x) =
of size n is 2(n — 1)/n for n > 1.

—— trees, the average root degree among the trees in T’
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Example 3.12

The n* Bell number B, is defined by the EGF

e B
e —1:§ ’ﬂxn
n!

Recall that the LHS is the EGF for the class of set partitions (see Section 3.1.4), so B,, counts the set

partitions of size n. Thus,
n
n
5.-3{"}
r
r=1

where {7} is the Stirling number of the second kind (see exercise 3.4), which is the number of partitions

of size n with r blocks.

Question 3.6.

What is the average number of blocks? We will find this in terms of B,,. See below.

If S is the class of set partitions, then
S =SET(SET>1(2))
so marking blocks yields us S = SET(u x SET>1(Z)). Thus,

S(u,z) = e e~V

d x €T T
Bl _ ou(e”=1) (,x _ 1 _ T, et =1 e¥—1
duS(u,aj) L, ¢ (e ) L e e

Then [z"]S(1,z) = B, /n! implies that

" d B
—1 n+1
n x € — n 75 17 —
[ae e = @] S(1,w) = =
So the average number of blocks is
[xn]eazeezfl _ [xn]eezfl _ Bn+1 )
[xn]eez—l - B,

The saddle point method can be used to show that this ~ @ as n approaches oo.

Lecture 25 - Wednesday, November 05

Midterm 2 Review today.
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4 Asymptotics
Lecture 26 - Friday, November 07

Most of the times, exact counting is too hard to do, so a lot of the times we would instead compute

the asymptotics of the objects. In other words, we approximate a complicated sequence by a “simpler” one.

Definition 4.1: Asymptotic

In

Let fn, gn be positive sequences (so f, > 0, g, > 0 for all n). We write f,, ~ g, if lim, o, —

n

=1.
We say that f, is asymptotic to g,.

Definition 4.2: Big-O

We write f,, = O(gy,) if there exists ¢ > 0 and N € N such that

Jn<c gn Vn > N

~— Note 4.1

We write f,, = gn + O(hy) if fr, — gn = O(hy,). What?

— Comment 4.1

The reason why we used = sign intead of treating O(g,) as a set is because we want to be able to use
algebra on them afterwards.

Definition 4.3: Small-o

fn

We write f,, = o(gy) if lim, 00 —

n

=0.

Note 4.2

These definitions only depend on the “eventual behaviour” of f, and g,, so these definitions make sense
if f,, and g,, are eventually positive.

Lemma 4.1
Let fn, gn,an, b, be eventually positive sequences, then
o If f, = O(gn) and a,, = O(by,), then f, + a, = O(gn + bn), and fra, = O(gnbn);

o If f, = 0(gn) and a,, = o(by,), then f,, + a, = o(g, + by), and fna, = 0(gnbn);
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Proof. We will only prove the first bit of the lemma. We know that there exists c1, N1, co, No > 0 such that

f’rLSCl'gn Yn > Ny

anp < c9-b, Vn > Ny

so we know that f,, +a, < c3-(gn +0by,) for all n > N3 where ¢ = max{cy, co} and N3 = max{Ny, No}. O

Lemma 4.2
Let fn, gn,an, b, be eventually positive sequences, then
1. fn=gn(1 4+ 0(1)) (which is equivalent to saying f, = gn + 0(gn)) if and only if f, ~ g,.

2. If f, = ayn + by, with a,, ~ g, and b, = o(gy), then f,, ~ g,.

Proof. For part 1, by definition, we have

fnr~gn = ﬁ%lasn%oo
In
<= ﬁ =1+ ¢, for some sequence ¢, — 0 as n — oo
In
fn
= —==140(1)
In
For part 2, we have
, b
lim 2% = fim 0
n—oo gn n—oo gn
as desired. 0
4.1 Asymptotic Hierarchy
Name General Member Example
constant fn=Afor A>0 fa=1
log-power | f,, = (logn)? for some B >0 | f, = /logn
power of n | f,, = n for some C' >0 fn =nl/?
exponent fn = D™ for some D > 1 fn=2"
n™ power fn = nf" for some E > 0 fn=n?"

Lemma 4.3

Any sequence in one row of this table is small-o of any sequence in the next row.

Proof. Basic limit laws and L’Hopital’s Rule. O
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Name General Member Example

negative n™ power frn = ne" for some e < 0 fon=n"2"

decreasing exponent | f, =d" for some 0 <d <1 | f, =(1/2)"

negative power of n | f, = n® for some C' <0 fn=n"13

negative log-power fn = (logn)® for some b < 0 | f, = (logn)~1/?
constant fn=afora>0 fn=1

Corollary 4.1

We can still show that any sequence in one row of this table is small-o of any sequence in the next row.

4.2 Asymptotic Through Calculus
1 Taylor Series are very useful for asymptotics.

Example 4.1

1
We know that 1. Zxk for |z| < 1, so for n > 1,

k>0
1 1\" 11 1 1
= Z) 1+ x40 =
1-1/n Z(n) +n+712+n3jL (n?’)
k>0
| We can approximate series with integrals.

Example 4.2

The series ; k= M ~ % What can we say about S, == kz_l k27

2
Yy Yy
y = y =

20 — 20
15 — 15 -
10 — 10 —
5 — 5 -
0 i T 0 T

0 1 2 3 4 0 1 2 3 4
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We know that
3

n " o "o n 3
= = 2 dt < k g/ 2 dt = — + o(n°)
- 2K = 3

so we can conclude that S,, = o(n?).

Lecture 27 - Monday, November 10

Example 4.3
More generally, we can show that for any positive rational number r, we have

nr—Q—l

;krNr+1

Theorem 4.1

Let a < b be integers and let f(x) be a continuous function on [a — 1,b+ 1],

(a) If f is increasing on [a — 1,b + 1], then

/ab_lf(x) de <

(b) If f is decreasing on [a — 1,b+ 1], then

/ab_1 f(z) dzx

Proof. The proof is left as an exercise, the intuition is shown in example 4.2 (i.e., we can always overapprox-

A

(]
=
=
IN

/:H f(z) dx

%
(]
=
=z
%

/ab+1 f(z) dzx

imate and underapproximate to get a upper and lower bound). O

Corollary 4.2

Let a < b be integers and f(x) be a continuous function on I := [a — 1,b+ 1]. If f is either increasing
on I or decreasing on I, and |f(x)| < M on I, then

< M

b b
fk)— | flz)de
X1 |

Proof. The upper and lower bounds in our Theorem differ by the integral of f(z) over an intervals of length
1. Since f is continuous, if J is an interval of length 1, then

/Jf(a:) dx

so we are done. O

<length(J) - maxy-c | f(2*)| < M
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Example 4.4

Let o > 0. Since f(x) = 2 has f'(z) = az®~? > 0 for all z > 0 and f is increasing for = > 0, so our

corollary implies that
a+1

n n
> k= + O(n%)
— a—+1

since |2*| < (n+ 1)® on [0,n + 1].
Example 4.5
Recall that H, = >p_; +. Let f(z) = 1/z. Since f is decreasing on (0, 00), we see that

n+1 T

an/ — =log(n+1)

1 :I:
Because f(x) is not defined at « = 0, we take out the first term and bound

n

1 " dx
H,—-1= =< — =1
>y < | 5= tomn

Thus
logn <log(n+1) < H, <logn+1

4.2.1 Quicksort

| A sorting algorithm is an algorithm that takes a list of numbers and sorts them.

= Comment 4.2

We assume that no number repeat for the sake of simplicity. This is equivalent to assuming that we

have a permutation.

We care about how many comparisons the algorithm takes (on average among the parameter of size n).

Here is the Quicksort algorithm:

Input: A permutation 7

Output: Sorted permutation
1 Pick a random element of 7;
2 Go through 7w, move everything smaller to the left of the pivot and else to the right;
3 Recurse on the left and right sides of the pivot.

Algorithm 1: Quicksort
We will show that the average number of comparisons performed by Quicksort on a permutation of

size n is < 2(n+ 1)log(n+ 1) = O(nlogn).

Lecture 28 - Wednesday, November 12
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1 In class Midterm again today.

Lecture 29 - Friday, November 14

Note 4.3

Easy to see that the worst case happens when we happen to always pick either the lowerest or the
largest number in the permutation, which yields

n(n—1)

(n=1)+(n =2+ +2+1=——

comparisons in total. On the other hand, the best case is when we always pick the median, which gives
us roughly nlog, n comparisons.

Let ¢, be the average number of comparisions quicksort does on elements in S,,. Then we have
co=c1 =0and forn > 1,

n

Cn = %Z {(n -1 +cp1+ cn,k}

k=1
1 n n
= —]_ —_ _ —
(n +n ch 1+ch k‘|
k=1 k=1
h+2y
(n— =Y ¢
n e i
n—1
= nep,=nn—1)+2)» ¢
k=1
= (nm—1Depor=m—-1)(n +Qch

Subtracting the two equations, we obtain

ne, =M+ 1)ep—1 +2(n—1)
Thus, we have

Cn Cn—1 2 2

n+1 n Jrn—l—lin(n—i—l)
<Cn,1 2
- n n+1
Cn2 2 2 0 = 2 2
< + + —=—++ <
n+l n+l1l n 2 k:2k—|—1 k:2k—|—1

Our asymptotic results imply that

- 1 " dx
< =1 1) — log(2
> i) py = losn ) - lont2)
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and so ¢, < 2(n+ 1)log(n+ 1) = O(nlogn).

Obtaining “tight” asymptotics: How to we get a tight asymptotic?
1. Start with
ne, = (n+ 1)cp—2 +2(n—1)
2. Multiply by 2™ and sum over n > 1.

3. Derive the ODE
(1—2)3C"(z) —2(1 — 2)?C(z) =22 =0

with ¢(0) = 0.
4. Solving the ODE to prove that

_ —2log(1 — ) 2x
O =y T T

5. Prove that
—log(1l —x)

[z"] 0 =n+1)H,—n

6. Conclude that ¢, = 2(n+ 1)H,, — 4n ~ 2nlogn ~ (1.39)nlog, n.

Comment 4.3
I_This implies that on average, Quicksort is only ~ 39% worse than the best case.

4.3 Asymptotics of Rational GFs

4.3.1 (C-Finite Sequences
Definition 4.4: C-Finite Sequence
A C-finite sequence (f,) is a sequence that satisfies a linear recurrence of the form
fn+clfn71+"‘+crfn7r:0 (*)

for all n > N > r where each c¢1,...,¢. € Q.

We say r is the order of the recurrence. The sequence (f,) is defined by (*) and its intial conditions

f15f27"',fN-
Example 4.6: Fibonacci

For Fibonacci sequence, we have fy = f1 =1 and f,12 = fny1 + fn for n > 0.
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Theorem 4.2

G(x)

(fn) satisfies (*) if and only if Fi(x) =) -, foz" satisfies F(x) = Ho)
= x

where

Hz)=1+caz+- - +ca"
Gx)=go+ g+ +gyaz" !

where gj :fk"‘rclfnfl'i""“v‘crfnfr for0<E<N-—1.

Lecture 30 - Monday, November 17
Proof. Define ¢y = 1 and let H(z) = ¢g + c1x+ -+ + ¢,z". Then

H(z)F(x) = (Z ckxk> kaxk = Z < ckfn_k> x"
k=0 k=0

k>0 n>0

Thus, [z"])H (z)F(z) is a polynomial in x of degree N — 1 if and only if (*) holds for all n > N.

Example 4.7: Fibonacci
Let fo=fi=1and f, — fu_1 — fn_o =0 for all n > 2, so

1

1—2—a22

F(z)

Example 4.8: Conway Look-and-Say Sequence
The sequence (https://oeis.org/A005150) is given by
(6,) =1,11,21,1211,111221, . ..
Let d,, be the number of digits in ¢,,, whose first few terms are
dp=1,2,2,4,6,...
Conway proved that (d,) is C-finite, and

Gx) 1+a+4---+18z7" —122™
H(z) 1l—z+--—927 + 6272

Lemma 4.4

If (f,) and (g,) are C-finite, then (f, + g,) and (3_;_, fegn—k) are also C-finite.
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https://oeis.org/A005150

Fact: If P(z) € Q[z] of degree d, then it has d roots in C. We can always write
P(z) = c(x — \)M (= Ag)®2 - (z — Ny %

for positive integers dy, . .., ds and distinct roots Ay, ..., As. We call dg the multiplicity of root x = ;.
A root of multiplicity 1 is a simple root.

Lemma 4.5

The multiplicity of the root A; is the smallest positive integer k£ such that

p) =P (N) = =pFD(N) =0

and p*)()\;) # 0.

Proof. Product rule. O

Fact (Partial Fraction Decomposition): Suppose F(x) = G(z)/H (x) where deg(G) = deg(H), and
H(z) = C(z — M\)% -+ (x — \y)% with the \;s are distinct and non-zero. Then there exists ng) eC

such that
s di e
i

0= 2 ey

i=1 j=1

4.3.2 (C-Finite Coefficient Theorem

Theorem 4.3: C-Finite Coefficient Theorem

Suppose (fy) is a C-finite sequence with rational generating function

F(z) = R(z) + IC;((?)’ deg(G) < deg(H) and H(0) =1

If A\1,..., \s form the distinct roots of H with multiplicities d, ..., ds, then
fao=Pi(n) - AT"+ -+ Ps(n) - A]" Vn > deg(R)

where P;(n) are polynomials in n of degree at most d; — 1.

Proof. Let n > deg(R), so f, = [2"|F(z) = ["]G(x)/H(z). A partial fraction decomposition implies that

e ()

where A;(x) = Jgﬁ NS (I_ZW for constants ¢/. Since A\; # 0, the Negative Binomial Theorem

implies

m+n—1
m—1

T

> = A"" . (polynomial in n of degree m — 1)
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Thus, [2"]A;(z) = Pi(n) - A, " for a polynomial P;(n) of degree at most d; — 1. O

Lecture 31 - Wednesday, November 19

Corollary 4.3

If (f) satisfies fn, +c1fn—1+ - + ¢ fner = 0 for all n > r, then f,, = PL(n)A]" + -+ + Ps(n)A;"
where the \;s are the roots of the characteristic polynomial H(xz) =14 ciz + -+ 4+ ¢,z and P;(n) is

a polynomial of degree at most 1 less than the multiplicity of A;.

Example 4.9

Find a closed form for the sequence (f,,) that satisfies

fn+3:3fn+1*2fn VnZO
and fo = f1 =4 and f2 =13.

Answer. Since the characteristic polynomial H(z) = 1 — 322 + 22 has the factorization H(z) =
(1 — x)2(1 + 2x), the C-finite coefficient theorem (4.3) implies that there exists A, B,C € C such that

fo=(An+B)-17"+C (—;)_n

Substituting n = 0,1, and 2 gives

(n=0) 4=fy, =B+C
(n=1) 4=f, =A+B-2C
(n=2) 13=f, =2A+B+C
Solving the system of equations gives us (A4, B,C) = (3,3,1) and so f,, = 3(n+ 1) + (—2)". O

4.4 Asymptotics of C-Finite Sequences

Can we find a “simple” g, such that f,, ~ g, where f, is C-finite? Not all terms in the C-finite coefficient
theorem 4.3 contribute to dominant asymptotics.

Lemma 4.6

Assume the hypothesis of the C-finite coefficient theorem. If Ay is a simple root of H and G(\;) # 0,
then the polynomial Py (n) is

_ —G()
B = 3 00

Proof. Since \j, is a simple root, we can write H(z) = (z — Ag) - I(x), where I()\;) # 0. Thus,

H'(z) = I(z)+ (x — \) - I'(z) = H'\)=10\)
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Partial fractions implies that we can write

G(x) _ G(x) _ C n J(x)
Hz) (x—=X)l(x) z-=X I(z)

for some constant C' and polynomial J(z). Clearing the denominators gives
Gx)=C-I(z)+ (x — Ag) - J(x)

Setting © = Ay yields us G(A\g) = C - I(\g), and thus C = GA) = G,(Ak) . Then, using the polynomial
I(Ae) — H'(A)

Ak (z) from the proof of the C-finite coefficient theorem 4.3,

c c 1 c ~G(w)

[xn}Ak(x) - [xn]l‘ - >\k - —)\k :Un} 1-— 1‘/)\k - —/\k .

as desired. O

Lemma 4.7

Assume the hypothesis of the C-finite coefficient theorem. If A is a root with multiplicity m of H(z)
and G(Ag) # 0, then the polynomial Py(n) satisfies

m(=1)"GAk) 1 m—
Py(n) = )\Z‘H(—m)()\kl;n +0(n™?)

Proof. Suppose H(x) = (z — A\)™I(z) and thus H™ ()\,) = m!I(\) # 0. PFD gives us

C J(x)

F(z) = +

N W () PP
d th
ane e o GO _ ml-GOw)
CI(Ow)  HM(A)
. . . C
Then we use Negative Binomial theorem on ———— O
(SB — )\k)m

Corollary 4.4

Assume the hypothesis of the C-finite coefficient theorem and that G and H are coprime. If |\1| < |Ax]
forall k =2,...,s, then
fo=Pi(n) - A"+ O(w™"n*"1h)
exponentially smaller error

where w = mina<p<s|A\x| > |A1| and « is the largest multiplicity of a root of H with modulus w.
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Corollary 4.5

Assume the hypothesis of the C-finite coefficient theorem and G and H are coprime. If [A\;] < |\g| for
all k =2,...,s and \; has a strictly higher multiplicity than any other root with its modulus, then

o m(il)mG(Al) m—1 —-n —-n, m—ao

S
polynomially smaller error

Example 4.10

If (f,) = the number of integer partitions of n with parts of size < 3, then

n 1
P =0 " = =y =)

Since H(x) == (1—2)(1—2?)(1—2?) = (1—2)3(1+2)(1 +z +2?), we see that H has a root x = 1 with
multiplicity 3 and all other roots have modulus 1 but multiplicity less than 3. Then H®)(1) = —36, so

=3 n?
o= g5 O~ 3

Lecture 32 - Friday, November 21

Here we summarize how we find asymptotics:

1. Find the roots for H that is the “closest to origin” (\; with minimim |A;|);

2. Among the roots with minimum modulus, find those with highest multiplicity.

4.4.1 Vivanti-Pringsheim Theorem

Theorem 4.4: Vivanti-Pringsheim Theorem

Suppose F(z) = 1?1((3 = ano fnax™ for G and H coprime polynomials. If

1. only a finite number of terms in (f,,) are negative; or

2. fn>0 Vn
then one of the roots of H with minimal modulus is positive and real.

Proof Idea. If p is a root of H of minimal modulus, then

lim |F(x)] = o0

T—p~

Note that [F(z)] = [, 50 faz™| < 32,50 falz|™ = F(|2]).

69



Example 4.11: Look and Say Digit Sequence
Recall the look and say sequence (d,,), Conway proved that (d,) is C-finite, and

Glx) 1+a+4--+18277 — 12278
H(z) 1l—z+4--—92™ +627

We know that there exists a positive root p > 0 of H with monimal modulus. We can even check that

pis a simple root (no other roots of modulus p). Therefore, we can obtain that

=G
pH'(p)

dn p" & (2.04) - (1.303)"

4.4.2 Skolem’s Problem

Consider the following problem:

" 1 1 2" 4+27" 2 | n
[z"] 5+ =
1—4x 1—2a/2 9—n 21 n

This goes to oo if n — 0o and n is even, and goes to 0 if n — oo and n is odd. Here is the statement of the
Skolem’s Problem:

[Skolem’s Problem]: Is there any algorithm that takes a rational function with integer coef-
ficient and decides if its Taylor expansion has a coefficient equal to 0. Equivalently speaking, it asks
whether you can detect if a C-finite sequence has a 0 term.

Note 4.4

We note that if (f,,) is C-finite, then (f2) is C-finite.

Open Problem (Positivity): Can we decide if coefficients are all positive?
Open Problem (Eventual Positivity): Can we decide if evantually all coefficients are positive?
Definition 4.5: N-Rational Functions

N-rational functions is a set of functions you get from operations listed below:

1
1—2zf

b 27 +7 X7 fH

Equivalently, they are generating functions defined by +, x, SEQ (with only atoms and neutrals — no
recursions).

Comment 4.4

N-rational functions are generating functions of regular languages, which is the same as the languages
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I “recognized by finite automata”.

If F(z) = % is N-rational and X is a root of H with |A] minimal, then there exists a positive integer

r such that A" = |A|". In other words, all minimal modulus roots differ by “roots of unity”.

~— Note 4.5

The above theorem implies that N-rational functions have “periodic behaviour” in their series coeffi-

cients.

All rational functions (with coefficients in N) appearing in combinatorial problems are N-rational.

4.4.3 Classify C-finite Sequences/ Rational Generating Functions

Example 4.12

1 2n
Prove that ¢, = —— is not C-finite.
n+1\n
Answer. The generating function ¢(z) = 1= 2;_4”” is not rational. d

Example 4.13

Prove that F(z) =3 -, fL—Z is irrational.

Note 4.6

We note that F(1) =3_, -, 1. = ((5). The question about the rationality of {(5) is open for 250
years.

Answer. f, =n~° is not C-finite. O

Example 4.14

Let p, = n'* prime number, then p,, = nlogn + nlognloglogn + O(n). The logn term means that

this sequence is not C-finite.

Lecture 33 - Monday, November 24
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4.5 Analytic Combinatorics

In our study of C-finite sequences, we saw how properties of their rational generating functions as complex-
valued functions (locations and multiplicities of the denominator roots) translated directly into asymptotic
information. Using more advanced techniques from complex analysis, these observations can be greatly
generalized.

4.5.1 Radius of Convergence and Exponential Growth

Let
F(z) = Z fnz"

n>0

be a power series, which we now consider as a function from the complex numbers to the complex numbers,
for all values of z where the series converges. In order to characterize the values of z where F(z) converges,
we must first introduce some notation.

Definition 4.6: Subsequence
A subsequence of (f,,) is any sequence (f, ) with
0<ki<ko<ky<---

(informally, a subsequence is obtained by selecting some terms of (f,) when running through the
sequence). For instance, (f,) is a subsequence of itself — other subsequences include the terms fs, with
even indices, and the terms with prime indices.

Definition 4.7: Limit Superior

The limit superior limsup,,_, .z, of any sequence (z,,) with positive real terms is the supremum of
all limits of all subsequences of (x,).

Note 4.7

Unlike limits, which may not exist because sequences can oscillate between different values, limit supe-
riors always exist (although they may equal infinity).

Example 4.15

If f,, =1 when n is even and f, = 2 — 27" when n is odd, then the subsequences of f, that converge
have limits equal to 1 or 2, so the limit superior of f, is 2.

The following result is usually presented in a first analysis course.
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Let
p = limsup |a,|*/™
n—roo
and define )
- if0< p< oo,
p
R=¢ c if p=0,
0 if p=oc.

Then F(z) converges whenever |z| < R and diverges if |z| > R

Definition 4.8: Radius of Convergence

We call the value R computed with the root test the radius of convergence of F(z).

— Comment 4.5
The root test is closely related to the ratio test, which is commonly seen in a first calculus course.

If F
lim |22t
n—oo | fp

exists then it equals the value p computed in the root test.

Example 4.16

e Since lim (2")Y/™ = 2, the radius of convergence of

n—oo
1—2z
n>0

is 1/2.

1!
e Since lim M = 00, the radius of convergence of

n—00 n!
E n!z"

n>0

is 0.
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e Since lim M

= 1, the radius of convergence of
n—o0 1/n

—log(l—z)zz%

n>0

is 1.

1/(n+1)!

e Since lim - =0, the radius of convergence of

n—o00 1/n!

n>0
is infinity.

We now restrict to the case of a series F'(z) with finite positive radius of convergence R = 1/p. In

this case we can write
fa=p"-0(n)+0(a")

for some function 6 that grows slower than any exponential function and 0 < o < p.
Definition 4.9: Exponential Growth and Subexponential Growth

We call p(n) the exponential growth of (f,,) and 6(n) the subexponential growth of (f,). Under our
conditions, the exponential growth forms the most impactful part of the asymptotic behaviour of f,,.

4.5.2 Singularities

We have now linked the exponential growth of the sequence (f,,) to the radius of convergence of its generating
function F(z). In the examples above it was possible to determine the radius of convergence directly from
a closed expression for (f,), but what if such an expression is not known?

The key to analytic combinatorics is that the radius of convergence (and much more) can be deduced
directly from the properties of F(z) as a complex-valued function. In fact, we have already seen this in a

special case.

Example 4.17

If
G(2)

RTE

is a rational function defined by the ratio of coprime polynomials G and H then the C-finite Coefficient
Theorem implies that the exponential growth of (f,) is the minimum value of |w|~! as w ranges over

the roots of the denominator H.

Generalizing beyond the rational case requires defining the singularities of a complex function.
Roughly, singularities are points where “something goes wrong” in a function, such as division by zero,
putting zero into a root, or putting zero into a logarithm. A rigorous discussion of singularities requires

discussing analytic continuation of complex functions, which we do not get into here.
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Example 4.18
o The only singularity of F'(z) =1/(1 —2z) is z = 1/2.
o The singularities of F'(z) = 1/(1 + 22) are z = i and z = —i.

e The EGF of permutations with no fixed points is

which has its only singularity at z = 1.

e The Catalan generating function
1—+v1—-4z
2z
has a singularity at z = 1/4 (where there is a zero inside the square-root). Note that z = 0 might

C(z) =

appear to be a singularity due to a division by zero, but the fact that the numerator of C also

vanishes at z = 0 implies that this “apparent singularity” can be “removed”.

Theorem 4.9: Cauchy

If F(2) =3, >0 fn?™ has a finite positive radius of convergence R then R equals the minimum modulus

of the singularities of F' over the complex numbers.
Because we deal with generating functions, which have non-negative coefficients, we can be more
specific about where to find singularities.

Theorem 4.10: Vivanti-Pringsheim Theorem

If F(z) = 3,50 faz" and f, > 0 for all n then the radius of convergence R of (fy) is a minimal
modulus singularity of F(z).

Comment 4.6
Thus, the exponential growth of (f,,) can be deduced immediately from the first positive real singularity

of F(z).

Example 4.19
o If F(2) =1/(1 — 2z) then f,, has exponential growth 2.

o If F(2) =e*/(1 — 2) then f, has exponential growth 1™ = 1.

1—+v1-—4z

o If F(z) = ————— then f, has exponential growth 4". In fact, using our closed formula for

the nth Catalan number and Stirling’s approximation, it is possible to show that

47l

n3

an
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o Recall that the EGF of surjections is F(z) = 1/(2 — e*). Since z = log 2 is the first (and only)
positive real singularity of F', the exponential growth of f,, is

(log2)™™ = (1.442...)"

Note that F' has an infinite number of singularities {log 2 + k(2i) : k € Z} in the complex plane.

Definition 4.10: Dominant Singularity

The singularities of F' closest to the origin are called its dominant singularities, as they are the ones

that dictate the dominant asymptotic behaviour of its coefficient sequence.

4.5.3 Meromorphic Asymptotics
Definition 4.11: Analytic

We say that a complex function F'(z) is analytic at a point z = a if its Taylor series

() (g
F(z)zZF ( )(z—a)”

n!
n>0

around z = a exists and has a positive radius of convergence.

Comment 4.7

A singularity of F' is roughly a point where F' is not analytic, however as mentioned above a fully

rigorous definition of singularities also requires the notion of analytic continuation.

Example 4.20

The functions e, sin(z), and cos(z), and all polynomials, are analytic in the entire complex plane.

Example 4.21

If p(z) is analytic at z = @ and p(a) # 0 then /p(2), 1/p(2), and logp(z) are analytic at z = a.

Example 4.22

If f(z) and g(2) are analytic at z = a then f(2)g(z) and f(z) + g(z) are analytic at z = a.

A ratio of analytic functions behaves “like” a rational function near each of its singularities, which

means that they have similar asymptotic behaviour. The following result follows from the Cauchy Residue

Theorem in complex analysis.
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Theorem 4.11: Meromorphic Asymptotic Theorem

Suppose that F'(z) = G(z)/H(z) is the ratio of complex functions G and H that are analytic in |z| < B
for some B > 0. If

o H(z) has a single zero z = w with |z| < B and no zeroes with |z| = B, and
o both H'(w) # 0 and G(w) # 0,

then

Note 4.8

e When F is a rational function then this result matches the C-finite Asymptotic Theorem (where

the denominator has a unique root of minimal modulus, with multiplicity one).

e It is possible to define the multiplicity of a zero of an analytic function using derivatives, and

generalize the Meromorphic Asymptotic Theorem beyond simple zeroes.

o If H has a finite set of zeroes with |z| < B and no zeroes with |z| = B then asymptotics are
obtained by adding up contributions from the zeroes with |z| < B.

Example 4.23
Find asymptotics for the number s,, of surjections of size n.

Answer. Asrecalled above the EGF for surjections is F'(z) = 1/(2—e?). Both of the functions G(z) =1
and H(z) = 2 — e* are analytic everywhere in the complex plane, and when |z| < 1 the only root of
H(z) is z = log 2. Since G(log?2) = 1 and H'(log?2) = —2!°82 = —log 2 are non-zero, the Meromorphic
Asymptotic Theorem implies

1P(:) = 5o 1052) ™" +0(1)

so that
n!

Sn ™ 2(log 2)n+1"

Example 4.24

The labelled class A of alignments has the labelled specification A = SEQ(CYC(Z)). Find asymptotics
for the number of alignments of size n.

Answer. This specification implies
1

Alz) = 1+log(l—2)’
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which has singularities when z = 1 (0 in a logarithm) and log(1l — z) = —1 (divide by zero). The
equation log(1 — z) = —1 has solution z = 1 — e~ = 0.632... which is the only dominant singularity

of A(z). Applying the Meromorphic Asymptotic Theorem then gives

n!

an, = nl[z"|A(z) ~ o Tyt

Exercise 4.1

Recall that the exponential generating function of alternating permutations is 7'(z) = tan(z). Use the

Meromorphic Asymptotic Theorem to find asymptotics for the number of alternating permutations.

4.5.4 The Principles of Analytic Combinatorics
The two basic principles of analytic combinatorics are

First Principle of Analytic Combinatorics: The locations of the singularities of a generating
function determine the exponential growth of its coefficient sequence.
Second Principle of Analytic Combinatorics: The type of the singularities of a generating

function determine the sub-exponential growth of its coefficient sequence.

Note 4.9

The type of a singularity includes dividing by zero (and with what multiplicity), putting zero in a root,

zero in a logarithm, etc.

Like the C-finite Coefficient Theorem, and Meromorphic Asymptotic Theorem, one “transfers” sin-

gular behaviour of F'(z) near its dominant singularities to dominant asymptotic behaviour.

4.6 Random Generation

Definition 4.12: Uniform Generation algorithm

A uniform generation algorithm for a combinatorial class C' is a randomized algorithm that takes n € N
and returns an element in C' of size n, where every element of C,, is returned with probability 1/c,,.

Comment 4.8

We assume that we have access to a function rand() that returns a random real number in [0, 1)

We can use rand to generate a random integer in {0,...,n} by defining
rand(0...n) = |(n+ 1) - rand()|

Our goal is to generate random algorithms that are correct, efficient, and easy to understand. Below we

discuss random generation using

78



Direct algorithms
o Bijections
e Recursive sampling

o Boltzmann sampling (which is no longer uniform random generation)

4.6.1 Direct Algorithms
If the class is simple enough, we can directly implement a random generation algorithm.

Example 4.25

Find a uniform generation algorithm to compute a random binary string of length n. We directly

generate binary digits one by one. In Sage code,

def rbin(n):
# Every string appears with probability 1/2°n
return [floor (2*RR.random_element(0,1)) for k in [1..n]]

where RR.random_element (0, 1) returns a random real number in (0, 1). For instance, running rbin(10)
returns (on the run saved in the Sage notebook corresponding to this chapter) [0, 1, 0, 1, 1, O,
1, 0, 0, O].

4.6.2 Bijections

If we can randomly generate objects in a class A, and know a bijection from A to another class B, then we
can randomly generate objects in the class B using the bijection.

4.6.3 Random Sampling

How can we use combinatorial specifications to randomly generate elements?

As usual, we start with our base cases. In pseudocode,

def gene(n):
if n = 0 return ¢
else return NULL

def genZ(n):
if n = 1 return Z
else return NULL

Combinatorial Sum Suppose A = B 4+ C and we have uniform generation algorithms genB(n) and
genC(n). How do we build genA(n)? If o € A,, then

Pla e B, =— =



so we define

def genBplusC(n):
x = RR.random_element (0,1)
if x < b(m)/(b(n) + c(n)) return genB(n)
else return genC(n)

If a € B then it is returned with probability

b 1 1 1

botcn by boten  an
and a similar argument works when a € C, so we have a uniform random generation algorithm.
Combinatorial Product Suppose A = B x C and we have uniform generation algorithms genB(n) and

genC(n). How do we build genA(n)?
The probability that o € A,, is @ = (8,7) and |3]| =k is

brCrn—rk
a"VL

Thus, we first randomly generate the size that 8 should have, then generate objects of the appropriate size
from B and C.

def genBtimesC(n):

X = RR.random(0,1)
k =0
a(n) = sum(b(k)*c(n-k), k=0..n)
s = b(0)*c(n)/a(n)
while x > s:
k=k+1

s + b(k)*c(n-k)/a(n)
return [genB(k), genC(n-k)]

S

The probability that (8,v) € By x Cp,—k is returned is

b - Cn—r 1 1 1

an, bk Cn—k an,

so we have a uniform random generation algorithm.

Sequence If B has no objects of size 0 then A = SEQ(B) is equivalent to
A=e+BxA

so the sequence construction can be captured by sum and product using a recursive algorithm.
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4.6.4 Boltzmann Sampling

Recursive sampling is powerful, but can be slow for complicated objects. Instead of saying we need an object
of size n, we can look for an object of size (say) [0.9n,1.1n] and (in general) do better. The elegant framework

for handling this is Boltzmann sampling.

Note 4.10

If F(z) =Y fnz™ has radius of convergence R, then F(p) converges to a complex number for |p| < R.
We call the points v € (0, R) the admissible values of F.

Let A be a combinatorial class and v an admissible value for A(z). A Boltzmann model at v assigns each
a € A the probability

Note that o
vle A(v)
S re) = 3 2= A0
ah aea Al) - Aw)
and P, («) depends only on |a|. A Boltzmann generation algorithm with parameter v is a randomized
algorithm that returns « € A with probability P, («).
The value v is a parameter: we can “tune” it to get objects of roughly the size we want. The

expected size of the Boltzmann algorithm with parameter v is

AP (o) = lafvled ~ vA'(v)
Z| ‘]P’U( )_OZ;A A(’U) - A(U) )

acA

vA'(v)
A(v)

so we typically solve n = for v € (0, R), if possible.

Example 4.26

For rooted binary trees with generating function

1—-+1—-4z

B(z) = 2z

we have seen in past chapters that R = 1/4. The following table shows the probabilities of generating
trees of size n = 0,1,2,3 for different values of v approaching R. The expected sizes of the trees

generated are approximately
e 0.14if v =0.1
e 0.62if v =0.2

e 24.5if v =0.2499

Comment 4.9

See more at https://enumeration.ca/asymptotics/random-generation/.
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5 Final Exercises

5.1 LIFT

— Exercise 5.1

Fix an integer k > 2. A k-ary rooted tree T has a root node ®, and each node may have at most one
child of each of k “types”. (The case k = 2 gives BRTs, and the case k = 3 gives TRTs.)

1/ k
(a) Show that the number of k-ary rooted trees with n nodes is ( n1>.
n\n—

(b) Show that, as n — oo, the expected number of terminals among all k-ary rooted trees with n

nodes is asymptotically (1 — l/k)kn.

Proof. (a) Let T'(z) be the OGF of k-ary rooted trees by number of nodes. A tree is a root (z) with, for
each of the k types, either no child or a subtree:

T(z)==z(1+ T(z))k

This is of the form T = z¢(T) with ¢(t) = (1 +¢)*. By LIFT,

T = ot = L = ()

n—1

3

(b) Let T'(z,u) be the OGF where u marks terminals (leaves). A node is either terminal (no children, weight

u) or has at least one child:
T(z,u) = z(u F (14 T(zu)k — 1).

Again T = 2¢(T, u) with ¢(t,u) = u+ (1+t)¥ — 1. By LIFT,
[T (2, u) = %[t"‘l]((l L HF 1),

Write T, (u) = [2"]|T(z, u).

70 = sl = ()

Thus the expected number of terminals is

A I S I e N e S
=@ =" ) _"j[[l kn—1)+j

For fixed k and n — oo, each factor tends to (k — 1)/k, hence

k—1\F 1\*
as desired. O
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— Exercise 5.2

If an SDLP (super-diagonal lattice path, also known as Dyck path) P touches the diagonal x = y at
points

(0,0) = (k‘o,k‘o), (kl,k‘l), ey (]{)T,k‘r) = (n,n),

then the sub-path of P between the points (k;—1, k;—1) and (k;, k;) is called the i-th block of P. Show
that the expected number of blocks among all SDLPS to (n,n) is 3n/(n + 2).

Proof. Superdiagonal lattice paths from (0,0) to (n,n) are Dyck paths of semilength n, counted by the

Catalan numbers

with generating function

C(z) = Z Cpz", C(z) =1+ 2C(2)%
Every Dyck path is a sequence of primitive Dyck paths (those touching the diagonal only at start and end).
These primitives correspond exactly to the blocks. Let P(z) be the OGF of primitive Dyck paths. Then

1 1
11— P(2)

C(z)

Mark each block with a variable u. The bivariate OGF is C(z,u) = #P(z). Then [2"u*]C(z,u) counts
paths of semilength n with k blocks, and

P(z)

-1
Using C(z) = 1+ 2C(2)? gives C(2)* = %, S0
C(2)* = g Cp+12",

n>0
hence B, = Cp41 — Cy,. Therefore the expected number of blocks among all SDLPs to (n,n) is

Bn Cn+1 - Cn Cn-‘rl

E,=—= = — 1.
Ch Chp Ch
Now L janso
Cot1 mrslogr)  dn+2
- 2n - ’
Co  om1()  nt2
5 dn+2 3
- n -+ = n . |
n+2 n+2
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5.2 ¢-Analogue

— Exercise 5.3

Show that for k,m,n € N:

m-+n

k

k
= §7 gm=i)k=i) [ml [ n 1
. ke
qg J=0 J q q

— Exercise 5.4
(a) Let 0 < a < ¢ <bbe integers. Show that
a+b - c at+b—c
(") -2 ()60

(b) State (without proof) a generalization of the formula in part (a) which involves g-binomial coeffi-

cients.

— Exercise 5.5

Fix n € Nand 0 < k < n, and let ¢ = p° be a prime power. Let F, denote the finite field with ¢

elements. Show that the number of k-dimensional subspaces of an n-dimensional vector space over F,
. n
is .
k
q

5.3 Integer Partitions

— Exercise 5.6

Let pe(n) be the number of partitions of size n with an even number of parts, and let po(n) be the
number of partitions of size n with an odd number of parts. Let od(n) be the number of partitions of

size n which have odd and distinct parts. Show that for all n € N:

pe(n) —po(n) = (=1)" od(n).

— Exercise 5.7

Show that
= 2i—1 ) i $d2yd
1+2% y) = '
]_:[1( —~ (1—$2)(1—x4)-~-(1—x2d)

5.4 Exponential Generating Functions
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— Exercise 5.8

Recall that a derangement is a permutation with no fixed points. Let D be the class of derangements.

Derive the exponential generating function

_ exp(=2)

D(x) T2

— Exercise 5.9

For a permutation o € Sy, let ¢(o) be the number of cycles of 0. What is the average value of ¢(0)

among all n! permutations in S,,?

Proof. Let P be the class of permutations labelling on cycles, so P = SET (1 x CYC(z)), and hence

P = o (w e (1)

Therefore, we have

The rest follows intuitively.

— Exercise 5.10

A triangle-tree is a connected graph in which every edge is in exactly one cycle, and this cycle has

length three (see figure below).

Show that the number of triangle-trees with vertex-set N, is 0 when n is even, and is

(2k)1(2k + 1)F-1
k! 2k

when n = 2k + 1 is odd. (Hint: Describe the recursive structure of the class of rooted triangle-trees.)

Proof. Let T be the class, then
T = SET(SET-2(2))

When extrac coefficient, remember to devide the result value by n because the specification is rooted, but

the triangle trees are not. O
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— Exercise 5.11

Prove that the number p,, of permutations of {1,...,2n} which have no cycles of length larger than n
is
2n 1
n=(2n)! [ 1— - .
pmm(1- 3 )
k=n+1
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